User-Centered QoS Computation for Web Service Selection

Chunqi Shi, Donghui Lin, Toru Ishida
Department of Social Informatics, Kyoto University
Yoshida-Honnachi, Sakyo-Ku, Kyoto, 606-8501, Japan
Email: shi@ai.soc.i.kyoto-u.ac.jp, {lindh.ishida}@i.kyoto-u.ac.jp

Abstract—QoS computation plays an important role in Web service selection. It involves property value preprocessing aspect, user satisfaction calculation aspect, and aggregation of multiple QoS properties aspect. However, little attention has been paid to users participating in QoS computation. In this paper, we examine QoS computation from the angle of experienced users and novice users. An experienced user is able to be more active in providing configuration information such as expected boundary of a QoS property, distribution function of user satisfaction, and the aggregation weight of each QoS property. While a novice user has limited experience to do this. Based on the study of user-centered factors in QoS computation, we propose a user-centered QoS computation, which provides a new choice of normalization in property value preprocessing aspect, an approach of approximation in user satisfaction calculation aspect, and a weight suggestion way in aggregation of multiple properties aspect. A case study in translation service selection shows that the proposed user-centered QoS calculation is more efficient for novice users than random configuration, and much more efficient for experience users.

Keywords—quality of service; service selection; user-centered;

I. INTRODUCTION

QoS based selection becomes important for users in finding a proper Web service according to non-functional properties, when faced with multiple functionally equivalent Web services. First, it involves matching functionally equivalent candidates according to service description [1], [2]. Second, it involves QoS composition for selecting from among candidates based on QoS properties [3], [4], [5], [6]. Moreover, during the QoS computation, the requirements of users can be submitted, and the satisfaction degree to which each service candidate meets these requirements can be calculated [5], [7], [8], [9].

Current QoS based selection schemes do not pay much attention to user usability. For example, they generally assume that the weights of properties being aggregated are assigned by the user, but novice users are reluctant to provide such weights, because of their lack of experience. Sometime, they have to ask experienced users for hints on weight setting, clearly, the lack of experience with configuration will affect the final selection result. The user may have no idea of the exact meaning of weights, yielding poor configuration. From the perspective of users, current QoS computation does not consider the participation of users in a facile and flexible way.

In service computing, how to promote usability for users has become a topic of increasing interest. Due to the different interests, knowledge for decision, and preferences, the role of users has been paid closer attention to various issues in service computing. For example, with regard to Web service discovery, beyond functional description adaptation, cooperative discovery was designed to increase practicability of matching Web services [10]. Moreover, the request history has been utilized to associate service candidates [11]. Even the discovery process has been studied and redesigned to yield easy-to-use operation [12]. With regard to QoS query formulation, a non-expert view has been taken, and a guide interface, which is a process wizard to guide user to formulate a query, has been designed [3], [13]. With regard to QoS metric definition, an interaction allows users to define personal metrics according to their skill or preference [14]. Even a reputation-based system has been designed according to such QoS metric definition [15].

In this paper, we focus on promoting the usability of QoS computation. Currently, many studies have examined QoS computation [2], [3], [4], [5], [6], [7]. Here, the QoS computation is reexamined from the angle of participating users by drawing a line between experienced users and novice users. This elucidates many usability problems, which can affect the computation of final results. For example, an experienced user, but not a novice, may have an idea of the boundary range of certain QoS property value. An experienced user may have image of their own satisfaction on certain QoS property values, but a novice user might be less confident of it. Besides, an experienced user might want to use this service for many times, while a novice user might use this service for only a few times, thus it seems unreasonable for a novice user to expend the same effort as an experienced user in mastering QoS calculation, for example, providing the detailed requirement information. However, existent research on QoS computation has paid no attention to such aspects.

Based on the above consideration, we propose user-centered QoS computation. First, we study the user-centered factors in the QoS calculation, from a view of telling apart experienced users and novice users. For each factor, we examine its potential usage and influences. Based on
this examination, we provide choices and suggestion for experience/novice users, which will make the interaction much easier for them. These choices and suggestions are adopted by our user-centered QoS based selection of Web service.

II. QoS Computation

The models of QoS based Web service selection have been intensely researched and discussed. A QoS computation model is designed with mainly two steps: the normalization of QoS property values, and ranking of aggregated utility [2], [4], [6], [16], [17], [18], [19], [20]. In these steps, divergence is seen on whether to adopt filtering [6], different normalization [4], [17], etc. Further, the importance of diverse requirements on QoS properties from different users is discussed and argued such that the satisfaction of the user requirement should be taken into consideration. As a result, QoS requirements are studied and imported in QoS computation [1], [5], [7], [8], [9]. In this step, divergence is seen with regard to requirement matchmaking [5], [8], [9], satisfaction utility [7], etc.

Based on above proposals, Figure 1 depicts the general QoS computation; aspects such as Web service discovery, functional query and matching, QoS monitoring and metric evaluation, etc are ignored. There are three key operations: property value preprocessing (for example, normalization), satisfaction calculation, and multiple properties aggregation. In this general model, users are assumed to provide QoS requirement and weight for aggregation of multiple QoS properties, both of which represent their intent, satisfaction. Indeed, the inner calculation mechanism of each step will affect the final selection results, for example, the functionally equivalent candidate Web services

![Diagram](image)

Figure 1. General QoS computation (more details in Section III.A, III.B, and III.C)

III. User-Centered Factors in QoS Computation

We examine the three operations to locate the main user-centered factors. Our strategy is to examine differences in the participation of experienced and novice users in each operation, and then to summarize those differences.

A. Property Value Preprocessing

During this step, the main target is how to preprocess each QoS property value independently from its evaluation metric (for example, the measurement unit). Generally, such calculation is called normalization. Based on existent QoS computation studies, the calculations of property value are categorised into two types: min-max normalization [6], [8], [16], [18], [19], [20], not min-max normalization [4], [17]. Obviously, the former is much more popular, and it is easy to normalize into range [0, 1].

However, there is a deficiency on this min-max type; it requires static boundary of QoS property values. Some property values are available before execution, for example, the cost. However, some property values are available only after execution, for example, the time. Of course, it is possible to design selection by using history data, i.e. the average response time for each Web service. However, dynamic selecting is important, especially for a domain specific QoS property, for example, translation quality of machine translation service. Because it is determined by not only the service, but also the input source. Thus, we can not predict the translation quality by assessing historical data. Besides, when users dynamically select one service from a set, prior expertise in setting the static boundary of property values becomes of little user. For such dynamic selection, it is not easy to predict the exact static boundaries of certain property values.

An example of translation service selection is used to describe the deficiency of min-max normalization (see Table I). Four candidate translation services, Google, J-Service, WEB-Transfer, Translation, are available. The properties cost and translation quality are used for service selection. We dynamically select service results for two source sentences (s1 and s2). For sentence s1, BLEU score is used as translation quality, while for sentence s2 WER score is used. Here, BLEU and WER are two famous automatic machine translation evaluation metrics, and their efficiencies are affected by the feature of input, for example, the length of input sentence. It is a situation that multiple metrics exist for one domain specific property [21].

Normalization is performed according to the min-max equation (1). The QoS property value \(q_{ij} \) is the result of evaluating the property \(p_j \) of Web service \(s_i \) by a mapping metric. \(l_i \) is the bottom boundary of the \(j \)th property \((p_j) \) values, and its upper boundary is \(u_i \). If a metric is the type

\[
q_{ij} = \frac{x_{ij} - l_i}{u_i - l_i}.
\]

457
of gaining, it is called positive. Otherwise, the metric is type of the paying, and it is called negative.

\[q_{ij} = \begin{cases} (q_{ij} - l_j)/(u_j - l_j), & \text{if metric is positive} \\ (u_j - q_{ij})/(u_j - l_j), & \text{if metric is negative} \end{cases} \]

If the maximum and minimum values (dynamically calculated) as the boundary, then \(l_j = \min\{q_{ij}\} \), and \(u_j = \max\{q_{ij}\} \), making it easy to normalize the property values (see Table II).

The normalized results for sentence \(s_1 \) and \(s_2 \) are exactly the same, which seems unreasonable:

- For \(s_1 \), there is no big difference between BLEU values of Google (0.82) and Translation (0.88). Considering the big difference between cost value of Google (0$) and Translation (8$), this similarity of translation quality suggests that we should emphasize cost.
- For \(s_2 \), by selecting Google (−0.2), its WER value is much better than Translation (−0.8). Even considering cost, we can not overlook such translation quality difference.

From the view of experienced/novice users, an experienced user may be understanding of the proper boundaries of a certain property evaluation metric, and it is useful in avoiding the deficiency of dynamic min-max boundary. While a novice user needs efforts to get such boundary and avoid this dynamical boundary problem. Those normalizations without boundary will be preferable. Thus, flexibility in the terms of normalization choices seems valuable for both experienced and novice users.

B. User Satisfaction Calculation

The goal is to evaluate the degree of matching between the QoS requirement of users and the available Web services. We note that three types of this matching, linear matchmaking [5], [8], [9], satisfaction distribution [7], and others [3]. Linear matchmaking can be viewed as a linear satisfaction distribution. Others, like the distance between QoS requirement and services [3], are not as popular. Satisfaction distribution involves how users will be satisfied with certain range of property values.

Many ways to use satisfaction distribution are studied. For example, the linear matchmaking is processed to yield a standard range (here, range \([0, 1]\)), while a default satisfaction distribution over this range is used for all properties [7]. Another way is to prepare a satisfaction distribution over the preferred range of property values [22], [23]. It is also used for describing the satisfaction of preference for a group or general users [24], instead of individuals.

From the view of experienced/novice users, a novice user might accept a default satisfaction distribution (like in [7]). But for an experienced user, a controllable satisfaction distribution is more preferable. However, current described models are uncontrollable and too complex (like in [22], [23]) for experienced users to define their own satisfaction distribution.

C. Multiple Properties Aggregation

For aggregation, the key user-centered factor is the weights used for aggregating multiple QoS properties [2], [4], [6], [16], [17], [18], [19], [20]. An experienced user can be trusted with total control over all the weights. Novice users, are best served by default weight values. Because of limited knowledge, a default value is more proper for starting up. Although, there are studies mentioned the problem of weights providing. For example, multiple weights are generated from pair wise weight matrix [6], which is more or less a kind of wizard process. Still, the weight setting is assumed to be precisely provided by both the experienced users and novice users without any reference. Without experience of how the weight changes can affect the final results, it will be a challenge for the novice users.

IV. USER-CENTERED QoS COMPUTATION

Based on the above examination, we propose a user-centered QoS computation scheme by adding three components based on the general computation model (see Figure 2), so as to promote usability. We will present details below.

- **Normalization Choice**: when static boundaries of QoS property value is not available (like certain domain specific properties), experienced users can set metric-related expected boundaries and use the simple and efficient min-max normalization. Because the novice users can not provide such information, a new normalization will the default for them.
- **Satisfaction Distribution Function**: experienced users are familiar with the QoS properties, and so are able

Table I

<table>
<thead>
<tr>
<th>Input</th>
<th>Property</th>
<th>Metric</th>
<th>Translation Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>(s_1)</td>
<td>cost</td>
<td>Dollar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>translation quality</td>
<td>BLEU</td>
<td>0.82</td>
</tr>
<tr>
<td>(s_2)</td>
<td>cost</td>
<td>Dollar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>translation quality</td>
<td>WER</td>
<td>−0.8</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Input</th>
<th>Property</th>
<th>Metric</th>
<th>Translation Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>(s_1)</td>
<td>cost</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>translation quality</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>(s_2)</td>
<td>cost</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>translation quality</td>
<td>0</td>
<td>0.45</td>
</tr>
</tbody>
</table>
to configure their own satisfaction distribution. Novice users are supported with default or linear satisfaction distribution (same effect as linear matchmaking).

- Weight Suggestion: experienced users can set their aggregation weight, while novice users are provided with suggested weights.

\[
\text{ratio-avg-chg}_{ik} = \frac{\sum_j q_{ik}/n - (\sum_j q_{ik} - q_{ik})/(n - 1)}{(\sum_j q_{ik} - q_{ik})/(n - 1) - 1}
\]

Equation (2).

However, \(\text{ratio-avg-chg}_{ik}\) is affected by \(n\), thus we use \(\text{ratio}_{ik}\) to represent the contribution yielded by selecting \(q_{ik}\) as the target property value (see Equation (3)).

\[
\text{ratio}_{ik} = \frac{q_{ik}}{(\sum_j q_{jk} - q_{ik})/(n - 1)}
\]

Equation (3).

Next, we normalize \(\text{ratio}_{ik} \in (0, \infty)\) into range \([0, 1]\), by using the following piecewise monotonic function:

\[
f(x) = \begin{cases}
\frac{x}{2}, & \text{if } 0 \leq x \leq 1 \\
\frac{2(2x - 1)}{2x}, & \text{if } x > 1
\end{cases}
\]

Equation (4).

Thus, if metric is positive, the calculation is \(q'_{ik} = \text{ratio}'_{ik}\) in Equation (5), otherwise it is \(q'_{ik} = 1 - \text{ratio}'_{ik}\).

\[
\text{ratio}'_{ik} = \begin{cases}
\frac{(n - 1)q_{ik}}{2\sum_j q_{jk} - q_{ik}}, & \text{if } q_{ik} < \sum_j q_{jk}/n \\
1/2, & \text{if } q_{ik} = \sum_j q_{jk}/n \\
\frac{2(n - 1)q_{ik}}{2(n - 1)q_{ik}}, & \text{if } q_{ik} > \sum_j q_{jk}/n
\end{cases}
\]

Equation (5).

We recalculate the property values (see Table III) of the example (see Table I). With regard to the cost normalization, it seems not as good (linear) as min-max normalization. But for translation quality normalization, the result is obviously more reasonable than min-max normalization. For sentence \(s_1\), selecting Google(0.48) is closer to selecting Translation (0.52). While for sentence \(s_2\), selecting Translation (0.83) is much better than selecting Google (0.25). Thus, we suggest this normalization for novice users.

Table III

<table>
<thead>
<tr>
<th>Input</th>
<th>Property</th>
<th>Translation Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>cost</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>translation quality</td>
<td>0.48</td>
</tr>
<tr>
<td>(s_2)</td>
<td>cost</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>translation quality</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Thus experienced users get more accurate property calculation since they provide expected boundaries for min-max normalization. While for novice users, the default choice of the above proposed normalization technique, calculates the contribution offered by dynamic selection, without demanding that the user provide boundary information of the property evaluation metric.

B. Satisfaction Distribution Function

Various satisfaction distributions are possible for both general and domain specific QoS properties. For example, the satisfaction distribution of cost for most people is a decreasing curve [23], [24]. But a default satisfaction distribution is not enough for experience users. In dynamical task situation, more controllable mechanism is necessary. For example, considering cost for some people, non-free service might be acceptable in some decent tasks like in a job, but no acceptable for certain entertainment situations.
So for the same cost, two different satisfaction curve can exist. Thus, it is hard to prepare all the curves for all the people in different tasks. Then, we need a mechanism to enable the user to depict its own satisfaction distribution in a convenient manner.

We provide an approximation way to control the satisfaction distribution. First, we define the controllable reference points for users. Motivated by importance categorization works by Srivastava et al. [24] and Yau et al. [7], we categorize the satisfaction into five levels, and map them into range \([0, 1]\): most satisfied \((1.0)\), satisfied \((0.75)\), medium \((0.5)\), unsatisfied \((0.25)\), most unsatisfied \((0)\).

Then, with these referent satisfaction points fixed by the users, it is easy to generate a polyline to connect these satisfaction points (see Figure 3). Based on the polyline, we can easily generate a piecewise function to approximate the potential satisfaction distribution. For example, a decreasing satisfaction distribution of time for a user, could be approximated by either the star node piecewise function or circle node piecewise function, or others (see Figure 3).

For experienced users, it is required to control these five levels satisfaction points. They can flexibly approximate their own satisfaction distributions for each QoS properties, especially those domain specific ones. For novice users, if they have taken the new normalization by contribution, then a default satisfaction curve could be an angular symmetry curve with stepper changing in medium \((0.5)\), similar to the default configuration proposed by Yau [7].

\[t_k = \frac{\bar{w}_k - \mu_k}{s} \sqrt{n - 1} \]

\[s_k = \left[\frac{1}{n} \sum_{i=1}^{n} (w_{ki} - \bar{w}_k)^2 \right]^{1/2} \]

\[P(\bar{w}_k - t_s \frac{s_k}{\sqrt{n - 1}} < \mu_k < \bar{w}_k + t_s \frac{s_k}{\sqrt{n - 1}}) = 1 - \alpha \]

This scheme provides each novice user with a weight suggestion. They are then able to adjust the weight setting

\[\sum_{i=1}^{n} w_{ki} = 1 \]

\[w_{ki} \geq 0 \]

\[\sum_{i=1}^{n} w_{ki} \leq 1 \]

\[P(\bar{w}_k - t_s \frac{s_k}{\sqrt{n - 1}} < \mu_k < \bar{w}_k + t_s \frac{s_k}{\sqrt{n - 1}}) = 1 - \alpha \]

\[P(\bar{w}_k - t_s \frac{s_k}{\sqrt{n - 1}} < \mu_k < \bar{w}_k + t_s \frac{s_k}{\sqrt{n - 1}}) = 1 - \alpha \]
in a very easy manner if they so desire. If the novice user adjusts the weight, we can easily normalize the weight setting into range $[0, 1]$ by $w_k = w_k / \sum w_i$.

V. CASE STUDY

We study the case of QoS calculation in selecting a translation service. Many machine translation services are available from the service-oriented platform Language Grid [28]. Faced with these functionally equivalent Web services, users have to select their preferred one based on the non-functional properties, such as time and cost. Moreover, the domain specific property translation quality is a key that users pay much attention to. Then, this QoS computation includes not only the general properties of time, cost, but also the domain specific property of translation quality. We will explain how the proposed mechanism works for translation service selection.

A. Configuration

There are 5 groups users, including Document translation users, Chat translation users, Web translation users, and 2 groups of test users. Each group has 4 people. And we describe the different expectations of the properties of translation service as follows.

Document Translation Expectation:

- translation quality is most important for formal document translation. Here, evaluation is by BLEU score, which suits documents. It should be higher than certain threshold. Otherwise, it becomes unacceptable exponentially.
- time and cost have a linear impact on service quality.

Chat Translation Expectation:

- time is most important for instant chat translation. It should shorter than a certain threshold. Otherwise, it becomes unacceptable exponentially.
- translation quality is evaluated in WER score, which is most popular for spoken language translation.
- translation quality and cost have a linear impact on service quality.

Web Translation Expectation:

- cost is most important for free Web browsing. Free is preferred. Any cost raise the level of unacceptability exponentially.
- translation quality is evaluated in NIST score, which emphasize correctly translating key words.
- translation quality and time have a linear impact on service quality.

We train Document, Chat and Web translation users into experienced users, and treat the 2 groups of reserved users as novice users. The train process includes two practices. First, each group member has to manually select a best service from four translation services. Second, each member has to configure the user-centered QoS calculation for selection and manually check the results, so as to master configuration.

After training, we have 3 group experienced users. 50 translation sources are prepared for each group. The translation quality, time were collected from four translation services, with the preset cost. Then we collect the QoS properties of each translation services for each translation source. The manually selection of best translation result by each experienced user is used as the standard selection result. Here, we assume that a user-centered QoS computation should replicate the service selection made by experts.

B. Evaluation

After we got all the QoS property values for all translation sources from the three groups, and the standard selection result by human from each experienced user, we evaluated the HitRate of each configured QoS computation. HitRate is the recall of translation result selected by the QoS computation compared to the standard selection result. For example, for one experienced user configured QoS computation, if 50 are automatically selected, and 30 of them are found in the standard selection result of the same translation sources, then its HitRate is $30/50 = 60\%$.

We analyze two comparisons between the QoS computation customized by experienced users and novice users.

- Comparing the HitRate of a QoS computation configured by an inner group experienced user to an outer group experienced user. This indicates whether the participation of users is important or not.
- Comparing the HitRate of a QoS computation randomly configured by a novice user to the default QoS computation by our proposed way. This indicates whether the suggestion is useful or not.

Table IV	AVERAGE HITRATE OF USER CONFIGURED SERVICE SELECTION BY EXPERIENCED USERS OF 3 GROUPS (DOCUMENT, CHAT, AND WEB), AND NOVICE USERS OF 2 GROUPS (RANDOM CONFIGURATION, AND SUGGESTED CONFIGURATION)			
Configured Service Selection	Manually Selected	Document	Chat	Web
Document Experienced Users	87%	50%	62%	
Chat Experienced Users	51%	76%	65%	
Web Experienced Users	60%	61%	81%	
Random Novice Users	56%	51%	64%	
Suggested Novice Users	73%	68%	69%	

C. Analysis

For each experienced user, his/her configured QoS computation yielded selection results (translation service) over three different groups of translation sources. The selection results are compared to the standard selection result of the same translation source, and HitRate of each pair is calculated. We can then calculate the Average HitRate (see Table IV). Obviously, the inner group experienced user
received higher HitRate over the standard data in the same group. For example, consider the experience users in Document group; their configured QoS computation achieved the highest score (87%) for the translation sources of Document, compared to Document standard results. It shows that one configured QoS computation cannot meet all expectations. Thus, user participation is important, and the selection will be more efficient once experienced users have generated proper setting for user-centered QoS computation.

For each novice user in one group, his/her randomly configured QoS computation yielded service selection for three difference groups of translation sources. The Average HitRate of this group is lower than the other group novice users who took advantage of suggested configuration (see Table IV). For example, for the same standard data of Document, a random configuration received lower Average HitRate (56%), 31% lower than the experience users (87%). However, the suggested configuration yielded Average HitRate of 73%, not as higher as the achieved by experienced users (87%). Thus, the suggested configurations are very effective for novice users, and are far superior to random configuration.

VI. RELATED WORKS

In the field of QoS based Web service selection, various subjects have been intensely researched: For examples, Menasc et al. [22] extended QoS broker with a consideration of utility functions. QoS broker is an important topic describing the architecture of QoS based web service selection. Yu et al. [29] provided a constraint view of QoS composition. QoS preference and constraint are major aspects of QoS composition. Zhou et al. [30] provided QoS ontology language for QoS based Web service matchmaking. In this paper, we focus on the QoS computation, and so do not address QoS composition description. QoS broker, QoS matchmaking, etc. In the QoS based Web service selection, when the QoS computation becomes necessary, it will be easy to extend our proposed mechanism to cover those aspects.

In the field of QoS computation, many studies have gone beyond the examined general QoS computation steps: Liu, et al. [4] described bounded dynamically selection computation, which still requires experienced-based maximum normalized value setting. Different from dynamical selection, Hang and Singh [23] adopted quality distribution to select a Web service with best quality expectation. Wang et al. [5] showed interest in the semantic description of QoS. Besides semantic description, Vu et al. [2] paid attention to reputation-based comparison of QoS. Yau et al. [7] proposed a requirement specification to standardize expression of user requirements. In this paper, we focus on the user-centered perspective of QoS computation. Different from the above works and their attention to functional enhancement, we pay attention to the usability of QoS computation. Thus, we can integrate our proposal into a wide range of functional enhancements.

In user-centered Web service area, Balse and Wagner [10] suggested an individual adaptation on service provisioning. Mobedpour and Ding [3] described a wizard for requirement query formulation. Liu et al. [12] adopted personalized perspective to present service discovery requirement. In this paper, our concept is to differentiate experienced from novice users, and so enhance usability for both.

VII. CONCLUSION

We studied general QoS computation for Web service selection with its three main steps: QoS property calculation, satisfaction calculation, and multiple properties aggregation. From the user-centered perspective, developed from an understanding of experienced/novice users, we identified several usability defects in each step. We introduced user-centered QoS computation by promoting the participation of users; our techniques provide choices and suggestions to promote the facility and flexibility for both experienced and novice users.

For normalization choices in property value preprocessing, we defined a new normalization method for novice users, who lack the experience needed to provide expectation boundaries. Experienced users, on the other hand, are provided with the freedom to set expectation boundaries, and receive easier-to-apply min-max normalization results.

As the satisfaction distribution function in the satisfaction calculation step, we provided a polyline approximation of common satisfaction distributions for experienced users. It allows easy control of the entry of personal satisfaction preferences. For novice users, a default configuration is suggested.

For weight suggestion, we employ the t-student distribution strategy, which calculates range references by taking advantage of settings entered by experienced users. Experienced users, with their rich experience, can optimize already useful weight settings.

Finally, we did a case study in translation service selection. Experience users could achieve higher HitRate through their optimized configurations, while novice users achieved better HitRate by accepting the suggested configuration. It shows that, our user-centered QoS computation is both necessary and useful.

ACKNOWLEDGMENT

This research was partially supported by Service Science, Solutions and Foundation Integrated Research Program from JST RISTEX.

REFERENCES

