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Abstract

A modern city is a large-scale complex system composed of various social systems,

which makes it difficult to predict dynamic changes. It is difficult for humans to

design urban systems to provide people with comfortable living environment and

make society more efficient. Multi-Agent Simulation (MASim) has been studied to

deal with the difficulties.

We model actors, such as humans and organizations, as agents in MASim. Ac-

cumulation of interaction among agents represents the whole society. That allows us

to deal with complex systems. Moreover, to design optimal social systems, problems

in social institution design should be recognized in advance by using MASim.

We need to define parameters to run simulations. Parameters define social sys-

tems in simulations. A parameter set corresponds to a candidate design for a social

system. When we design new social systems, an outline of systems is often decided.

However, clear guidelines are not found since it is ambiguous what parameters we

should use and set. In massively MASim, the number of parameters increases and

phenomena become more complicated because of decisions of agents and interac-

tions among agents. The number of simulation patterns increases, and full search

is not realistic. Therefore, this study aims to get a semi-optimal design in designing

new social systems by using massively MASim, even if proper parameter sets are not

clear, and full search is difficult within a realistic time because of large search space.

For achieving this objective, this study addresses the following issues.

Search for a semi-optimal solution Exhaustive search is necessary to obtain a semi-

optimal design by analyzing structure of social systems and improving under-

standing. However, computational complexity necessary to run one simulation

is very high, and combinations of parameters needed to search exhaustively are

massive because of an increase of parameters and elaborated models. Therefore,

frameworks to run exhaustive simulations efficiently have been demanded.

This research uses Genetic Algorithm (GA) and proposes a GA-driven approach

to achieve a semi-optimal design. Multipoint search is a characteristic of GA, which
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gives GA the ability to reach global optimization and makes parallel implementation

of GA easy. Therefore, this research considers the approach to search solutions effi-

ciently and to get a semi-optimal solution in a short time in designing complex social

systems.

The proposed approach treats parameter sets of social systems as chromosomes

in GA. A social system is expanded on the basis of design information contained in

a chromosome, and MASim is executed. The proposed approach evaluates results of

the simulation on the basis of a social indicator and treats the evaluation value as a

fitness value of the individual with the chromosome. New individuals are generated

by selection, crossover, and mutation based on GA. This research searches a semi-

optimal solution by iterating similar processes. This research uses distributed GA,

which has high parallel efficiency, and improves search efficiency.

This research treats an integrated system composed of traffic system and power

system as a target for designing social systems. More specifically, EVs transport

surplus power generated by PV generation, and people share power through power

exchange stations located in various places. Four parameters are defined as a chro-

mosome. These parameters are participation rate of system, acceptable range of the

distance to station, the number of stations, and station placement pattern. A better

system is defined as a system to create a better balance between suppliers’ amount

of discharge and consumers’ amount of charge in power exchange stations. Fitness

value is defined on the basis of above evaluations. In experiments with 9000 agents,

the proposed approach obtained the semi-optimal solution with the second best fit-

ness value in approximately three days. It takes approximately fifteen days to execute

full search. The derived solution achieved approximately 3% power saving as com-

pared to other solutions. Therefore, it is believed that the proposed approach can

search a semi-optimal solution in the target social system in this study.

This research makes a contribution as follows.

Proposal and analysis of the method for designing social systems This study pro-

posed a method for getting a semi-optimal design by using GA-driven search

algorithm, even if computational complexity to search fully is high since the

social system is complex. It was found that the proposed approach can search a

semi-optimal solution in the target social system in this study.
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GA駆動の大規模マルチエージェントシミュレーションに基づく
社会システムのデザイン

十見俊輔

内容梗概

現代の都市は，多種多様な社会システムが複合した大規模複雑系であり，動

態の予測は困難である．人々に快適な生活環境を提供し，社会をより効率的に

するための都市規模のシステムデザインは人手での計算能力を超えている．こ

の課題に対して，マルチエージェントシミュレーション (MASim: Multi-Agent

Simulation)を利用した研究が行われている．

MASimでは，人間などの行動主体をエージェントとしてモデル化し，それら

の相互作用の集積として社会といった全体が表現される．それにより，人間社

会における複雑な現象を取り扱うことが可能である．そして，社会制度設計を

行う際に社会シミュレーションを用いて事前に問題点を把握し，最適な制度設

計を予見的に行う社会デザインが可能になると期待されている．

シミュレーションを実行するためには扱うパラメータを決定しなければなら

ない．そのパラメータにより対象となる社会システムが規定され，あるパラメー

タセットはひとつのデザイン案に当たる．新たな社会システムを設計する際に

は，そのシステムの大枠が決定されていることは多い．しかし，具体的にどの

ようなパラメータを扱い，その値をどのように設定すべきか曖昧で，明確なガ

イドラインは見当たらない．また，大規模な社会シミュレーションともなると，

扱うパラメータの増加，個々のエージェントの判断やその相互作用により，現

象が複雑化していき，パターンそのものも増大する．そのため，シミュレーショ

ン 1回の計算量は大きく，網羅するパラメータの組合せも膨大になり，全探索

は現実的ではない．そこで本研究では，妥当なパラメータセットが不明瞭であ

り，探索空間が広大で全探索が現実的には困難な状況下でも，準最適なデザイ

ン案を得ることを目的とする．

この目的を達成するために，本研究では以下の課題に取り組む．

準最適解の探索 対象となる社会システムの構造や性質を分析して理解を深め，

準最適なデザインを獲得するには，網羅的な試行が必要となる．しかし，大

規模シミュレーションではモデルの精緻化やパラメータの増加により，単

体のシミュレーション実行時間と網羅すべき組合せは膨大になってしまう．
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そのため，網羅的試行を効率的に実行し，少ない計算時間で探索を可能と

するフレームワークが必要である．

この課題に対し，本研究では遺伝的アルゴリズム (GA: Genetic Algorithm)を

利用し，準最適なデザインを獲得する手法を試みる．GAは多数の解を同時に

探索点として持ち，大域的最適化能力だけでなく並列実装を容易にする．その

ため，複雑な社会システムデザインにおいても効率よく探索を行い，少ない計

算時間で準最適解を求めることができると考える．

提案手法では，デザイン案である社会システムを規定するパラメータセット

をGAにおける染色体とする．その染色体が内包するデザイン情報を基に社会

システムが展開され，MASimが実行される．その結果をある社会指標に基づ

いて評価し，その評価値を対応する染色体を持つ個体の適合度とする．そして，

GAに則った選択，交叉，突然変異によって，新たな染色体が生み出される．同

様の処理の繰り返しによって，評価値の高い準最適なデザインを探索する．GA

には並列化効率の高い分散GAを用い，探索効率が良くなるようにする．

また本研究では，デザインする社会システムの対象として，交通流と電力流

通の複合システムを扱う．具体的には，太陽光発電による余剰電力を電気自動

車により運搬し，各地に設置された車載電力交換ステーションで電力を共有す

るシステムである．染色体に使用するパラメータセットとして，システム参加

率，立ち寄り許容距離，車載電力交換ステーション設置数，配置パターンの 4

つを設定した．また，車載電力交換ステーションにおける供給者の放電量と需

要者の充電量のバランスが良いほど優れたシステムであるとし，適合度を定義

した．エージェント数 9000の実験では，全探索に約 15日かかるところ，約 3

日間で全解中 2番目に適合度が高い準最適解を導出した．また，得られた近似

解は他の解と比べ，約 3%の節電が実現された．これらにより，本研究で対象と

したシステムでは準最適な解が探索できていると考えられる．

本研究における貢献は以下の点である．

GA駆動MASimによる社会システムデザイン手法の提案と分析 対象となる社

会システムが複雑で，探索空間が広大で全探索には計算量が膨大になって

しまう状況下でも，GA駆動の探索アルゴリズムにより準最適なデザイン

を探索する手法を提案した．提案手法により，本研究で対象としたシステ

ムでは準最適な解が得られたことが分かった．
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Chapter 1 Introduction

A modern city is a large-scale complex system composed of various social systems,

which makes it difficult to predict dynamic changes. It is difficult for humans to

design urban systems to provide people with comfortable living environment and

make society more efficient. Multi-Agent Simulation (MASim) have been studied to

deal with this difficulties [1].

We model actors, such as humans and organizations, as agents in MASim. Accu-

mulation of interaction among agents represents the whole society. That allows us to

deal with complex phenomena in human society. Moreover, to design optimal social

systems, problems in social institution design should be recognized in advance by

using MASim [2]. For example, we apply MASim to traffic phenomena [3], power

distribution phenomena [4], and disaster evacuation phenomena [5, 6]. Therefore,

Results of simulations help us understand, predict, and verify phenomena.

However, there are some problems. First, it is difficult to directly implement op-

timal social policies predicted by simulation results, since there are interests among

parties, emotional issues, feelings of resistance to changes in convention, occurrence

of unexpected events. Therefore, it is difficult to calculate an “optimal” solution by

simulating only once and force the solution on society simply [7]. Thus, processes

for reconsidering simulation results by humans and running simulations reflecting

results of reconsideration.

The second problem is related to defining parameter sets of simulations. We need

to define parameters in order to run simulations. Parameters define social systems in

simulations. In other words, a parameter set corresponds to one candidate design for

a social system. When we design a new social system, an outline of the social system

is often determined. However, clear guidelines are not found since it is ambiguous

what parameters we should use and set. Therefore, methods for defining parameter

sets in simulations largely depend on researchers’ experience and knowledge [8].

The last problem is related to computational complexity necessary to run simu-

lations and to search an optimal solution. In massive social simulations, the number

of parameters increases, and phenomena become more complicated because of deci-

sions of agents and interactions among agents. Thus, the number of simulation pat-
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terns increases. Moreover, the amount of data necessary to manage increases when

we attempt exhaustive simulations for structure analysis and identification of target

social systems. Therefore, computational complexity necessary to run one simulation

is very high, and execution time is very long. Exhaustive search is difficult within

a realistic time since combinations of parameters needed to search exhaustively are

massive. Accordingly, we need to take advantage of computational resources of super

computers, such as K computer, to run massively complex simulations. Furthermore,

frameworks to run exhaustive simulations efficiently have been demanded [9].

The objective of this study is to obtain a semi-optimal design in designing new

social systems by using massively MASim, even if proper parameter sets are not

clear, and exhaustive search is difficult within a realistic time because of large search

space. For achieving this objective, this research uses Genetic Algorithm (GA) that

is one of evolutionary computation and proposes a GA-driven approach to achieve

a semi-optimal design. The greatest characteristic of GA is having many solutions

as search points at the same time. This characteristic not only gives GA a ability to

reach global optimization, but also makes parallel implementation of GA easy [10].

Therefore, this research considers the approach to search solutions efficiently and to

get a semi-optimal solution in a short time in designing complex social systems.

The proposed approach treats parameter sets defining social systems, candidate

designs, as chromosomes in GA. A social system is expanded on the basis of de-

sign information contained in one chromosome, and MASim is executed. The pro-

posed approach evaluates results of the simulation on the basis of a social indicator

and treats the evaluation value as a fitness value of the individual with the chromo-

some. New individuals are generated by selection, crossover, and mutation based

on GA. This research searches a semi-optimal solution with a high evaluation value

by iterating similar processes. This research uses Distributed Genetic Algorithm

(DGA) [11, 12], which is one of GAs and has high parallel efficiency, and improves

search efficiency.

Meanwhile, what kind of social systems is needed to be considered in this study?

Energy is necessary for every social activities. New energy and methods for introduc-

ing into society have been searching around the world in recent years. Every social

activities are driven by traffic, which is generated from comings and goings of hu-
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mans, things and information by consuming energy. Examinations regarding energy

and traffic systems are necessary when we design future society [13]. Society be-

comes environment-oriented, and Photovoltaic (PV) power generation systems, and

Electronic Vehicles (EV) spread among people. The diffusion brings a situation that

PV’s general users become to generate energy, and EV’s general users become to

transport and stock energy by using EV batteries.

This research treats a integrated system composed of above traffic system and

power system as a target for designing social systems. More specifically, EVs trans-

port surplus power generated by PV generation, and people share power through

power exchange stations located in various places. The power exchange station is a

place with infrastructure facilities to charge power. People with surplus power gen-

erated by home PV generators provide surplus power in power exchange stations.

In the other hand, people who don’t have PV generators at home and surplus power

charge power in power exchange stations. In this social system, each person changes

behavior depending on both traffic flow and power distribution. As for traffic flow,

people change behavior depending on daily traffic situations and remaining battery

capacity of EVs. As for power distribution, people change contribution to power

distribution since each power condition, such as power consumption and remaining

battery capacity of an EV, changes depending on changes in traffic behavior. This so-

cial system exhibits complex behavior based on the interaction between traffic flow

and power distribution.

This research applies the proposed approach to the integrated system composed

of traffic system and power system, and designs the new social system composed of

various existing systems. This research conducts two types of experiments. One is in

9000 EVs, and the other is in 20000 EVs. Thereby, this research examines whether

search efficiency could be improved by changes in the number of agents or not. This

research also examines how the nature of the problem is changed by the number of

agents. Moreover, this research verifies the proposed approach by analyzing search

time, convergent trend and simulation results of obtained candidate designs.

The rest of the thesis is organized as follows. In Chapter 2, related work on

GA and social system design based on MASim is shown. Diffusion and impact of

EV and PV, which are related to the design target in this study, are described, too.

3



Chapter 3 describes the integrated system composed of traffic system and power sys-

tem. Next, Chapter 4 describes a simulation platform to simulate the social system.

Chapter 5 proposes a social system design method based on GA-driven MASim, and

then Chapter 6 discusses results of experiments with the proposed approach. Finally,

Chapter 7 presents the conclusion.

4



Chapter 2 Related Work

First, this chapter describes social system design based on MASim, which is back-

ground of this research. Secondly, this chapter describes GA, which is used in order

to get a semi-optimal design in the proposed method. Finally, present situations of

EV and PV are shown. EV and PV in the integrated system composed of traffic

system and power system are simulated in this study.

2.1 Social System Design based on Multi-Agent Simulation
Much attention has been paid to Multi-Agent Simulation (MASim). MASim de-

scribes diversity of actors’ behavior and allows observation for each of actors and

analysis [14]. We model actors, such as humans and organizations, as agents in

MASim. Accumulation of interaction among agents represents the whole society.

That allows us to deal with complex systems. Moreover, to design optimal social

systems, problems in social institution design should be recognized in advance by

using MASim [2].

Previous studies have proposed new social systems and mechanisms by using ar-

tificial intelligence, and verified the systems by simulations. In many of these studies,

researchers design new social systems and use simulations for advance verification

of the systems.

[3] is a research on traffic flow. They pointed out that researches on autonomous

vehicles proceeded, however existing intersection management system is wasteful-

ness in autonomous vehicles since the management system is for humans. There-

fore, they suggested an alternative mechanism for coordinating the movement of

autonomous vehicles through intersections. In the mechanism, autonomous vehi-

cles can move efficiently and safely. Drivers and intersections in the mechanism are

treated as autonomous agents in a multi-agent system. Vehicles can pass through

interactions without traffic lights since intersections use a new reservation-based ap-

proach built around a detailed communication protocol in this multi-agent system.

Moreover, they tested the management system in simulations and presented experi-

mental results that strongly attest to the efficacy of the approach.

[4] is a research on power distribution. They proposed a power management
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system when power storage devices are installed into every homes in the future. If

micro-storage devices are all charged at the same time using power from the elec-

trical grid, it means a higher demand and, hence, requires more generation capacity,

results in more carbon emissions, and, in the worst case, breaks down the system

due to over-demand. To alleviate such issues, they presented a novel agent-based

micro-storage management technique that allows all storage devices in the system to

converge to profitable, efficient behavior. Furthermore, their solution shows that, in

the UK electricity market, it is possible to achieve savings of up to 13% on average

for a consumer in simulations.

In these researches, methods for determining parameter sets in simulations largely

depend on researchers’ experience and knowledge. There are limitations to think of

designs of new social systems by humans.

On the other hand, it is important in designing social systems not to predict be-

havior social systems accurately, but to verify whether behavior of social systems fall

with in a assumed range or not. Thus, we aim to create frameworks to investigate

models of social systems exhaustively by simulations [8].

Exhaustive simulations are starting to be used to verify emergency evacuation

plan and traffic flow navigation. In [5], they proposed the one-dimensional pedes-

trian model, which simplifies the obstacle avoiding algorithm and the interference

between pedestrians for high-speed calculation. They developed evacuation simula-

tor NetMAS with the one-dimensional pedestrian model. The validity of the model

was confirmed by comparing simulation results with data observed from an actual

evacuation drill. As application of their simulator, they took up the evacuation in a

large-scale commercial complex, and verified the effective factors on the efficiency of

evacuation. In [6], they verified traffic flow navigation by using the one-dimensional

pedestrian model and PRACTIS(Pedestrian Rapid Aggregation Control Town-wide

Integrated Simulator). PRACTIS is a simulation controller, which verifies or eval-

uates exhaustive simulations. They investigated characteristics of congestion occur-

rences by running exhaustive simulations for various patterns. More specifically,

they confirmed an effective traffic flow control method for Sumida fireworks festival

by using PRACTIS and executing 1500 patterns of simulations.

[9] proposed a method for search parameters of simulations efficiently and ex-

6



haustively. In massive social simulations, the number of parameters increases and

phenomena become more complicated because of decisions of agents and interac-

tions among agents. Thus, the number of simulation patterns increases. Moreover,

the amount of data necessary to manage increases when we attempt exhaustive sim-

ulations for structure analysis and identification of target social systems. Therefore,

they pointed out that a method for executing exhaustive simulations efficiently is

necessary. They proposed shifting iterate design of experiment, which is based on

design of experiment, to search exhaustively combinations of parameters efficiently.

They also proposed a method for searching parameters by using analysis of variance

contribute to find sensitive combination of parameters. Furthermore, They verified

these methods. They treated n-prisoners’ dilemma as a example. Future work is

to increase the size and complexity of problems and verify the large-scale complex

problems.

It is difficult to run simulations exhaustively and seek a precise optimal solution

since the design target in this research is a new integrated social system composed of

various social systems. For this issue, this research attempts to search a semi-optimal

solution by approximate search method based on GA, which is one of evolutionary

computation. There are other methods for search optimal solution. However, society

originally have a nature of remaining better things and improving bad things, and

it seems that the nature could be applied in designing social systems. As the Sec-

tion 2.2 shows, the greatest characteristic of GA is having many solutions as search

points at the same time. This characteristic not only gives GA a ability to reach

global optimization, but also makes parallel implementation of GA easy. Therefore,

this research considers GA can search solutions efficiently and get a semi-optimal so-

lution in a short time in designing complex social systems. That is why this research

employs GA.

2.2 Genetic Algorithm
Holland, J. H. proposed Genetic Algorithm (GA) [15], and D. E. showed various

expansions and a direction of development [16]. GA is a field of research that has

advanced in expansions and development the most widely in evolutionary computa-

tion. GA is inspired from evaluation of population of organisms. A set of solutions

7



Initialize
an initial population

Evaluate individuals

Reach
a termination

condition?

START

END

Generate a next
generation population

Yes

No

a) Select

b) Crossover

c) Mutate

Figure 1: Flowchart representing simple GA

for an optimization problem corresponds to a population in GA. Population for the

next generation is generated from the current population by using genetic operations

such as crossover and mutation. At this time, by using a mechanism similar to nat-

ural selection, a relatively good solution in the current population is selected as the

parent to generate a solution for the next generation. New solutions generated con-

stitute the population for the next generation. By iterating this generation update,

population is expected to gradually evolve into a set of good solutions. Even if im-

provement of solutions at between individual generations are very small, an optimal

solution or a good approximate solution close to the optimal solution are obtained as

a result of evolution in the long term by the accumulation of improvement by gener-

ation updates. This is the basic search mechanism in GA, and improving solution set

corresponds to the evolution of population of organisms. Moreover, GA is also ap-

plicable to an optimization problem in which the objective function is not expressible

in strictly mathematical expression. Therefore, GA is effective when an evaluation

value of solutions is given by simulations [10].

Figure 1 shows a flowchart of simple GA, and the general procedure for GA is

described as follows:
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1. Generate initial population.

2. Evaluate each individual in the population.

3. Confirm whether termination conditions are met or not. Terminate if conditions

are met, otherwise go to the next step.

4. Repeat the following steps to produce a child population. Choose individuals

included in the population for the next generation from the child population.

(a) Select parent individuals.

(b) Apply crossover operation to the selected parent individuals.

(c) Apply mutation operation to the child individuals applied crossover opera-

tion.

5. Go back to 2.

The greatest characteristic of GA is having many solutions as search points at

the same time. This characteristic not only gives GA a ability to reach global opti-

mization, but also makes parallel implementation of GA easy. For this reason, many

parallel models of GA have been studied. Even among those, Distributed Genetic

Algorithm (DGA) [11] has not only high parallel efficiency but also superior search

performance relative to others [12]. Therefore, DGA is expanded to various ways as

a search algorithm.

DGA divides a population into some sub populations. DGA is called island

model since a sub population is also called an island. In each sub population, ge-

netic operations such as selection, crossover, and mutation are applied independently

of other sub populations as in Figure 1. In DGA, migration operation, which ex-

changes searching information between sub populations, is added. Figure 2 shows

the schematic of migration in DGA. There are a synchronous model and an asyn-

chronous model. These are different from time to apply migration operation. A

synchronous model migrates among all sub populations synchronously. An asyn-

chronous model migrates partly between sub populations.

When implementing DGA in parallel computers, we assign a processor to each

sub population. Most of calculations are performed within each processor, and DGA

has high parallel efficiency since genetic operations are executed independently ex-

cept migrations. Selection locality improves convergence within each sub population

because searching in some sub populations. Furthermore, indigenous evolution in
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Figure 2: Schematic of migration in DGA

each sub population can keep diversity in whole population [10].

In DGA, there are parameters relating to migration as follows:

Number of islands The number of sub populations. This number and population

size decide each sub population size.

Migration interval Interval of generations to migrate.

Migration rate Percentage of migrants to all individuals in a sub population. The

product of sub population size and migrate rate decides the number of migration

individuals.

Migration topology Migration path. Individuals migrate from which sub popula-

tion to which sub population.

Method for selecting migrants How to select migrants.

Proper parameter settings differ with a target optimal problem. In [17], they pre-

sumed the best parameters of DGA by using design experiment method. For the

preliminary experiment, they studied 13 types of parameters of DGA by applying 4

numerical test functions. The parameters are classified into two groups; the parame-

ters that are used in sub populations and the parameters that are concerned with the

migration. From the numerical examples, the best values of parameters were derived.

This study sets parameters that are concerned with GA on the basis of results of [17].
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Table 1: Diffusion target of next-generation vehicles (reprinted from [18])

Vehicle type 2020 2030

Conventional vehicle (%) 50–80 30–50

Hybrid vehicle(%) 20–30 30–40

EV & plug-in hybrid vehicle (%) 15–20 20–30

Table 2: EV battery road map (created based on data from [20])

Indicators 2012 2020 2030

Mileage per charge (km) 120–200 250–350 500

Weight of battery (kg) 200–300 100–140 80

Electric energy of battery (kWh) 16–24 25–35 40

Energy density (Wh/kg) 60–100 250 500

Cost of battery (Millions of Yen) 1.1–2.4 0.5–0.8 0.4

Cost of EV (Millions of Yen) 2.6–3.76 2.0-2.3 1.9

2.3 Diffusion and Impact of EV and PV
Electric Vehicles (EV) enter the diffusion stage. Table 1 shows that diffusion target

of EVs and plug-in hybrid vehicles is set between 20% and 30% [18]. EVs are

likely to diffuse in the future because of high environmental performance of EV and

a relationship with urban design policies, such as compact city. Then, the key of

EV diffusion is to improve EV performance. Energy density in 2030 is predicted

to approximately five times larger than in 2010 [19]. Table 1 shows mileage per

charge in 2012 is between 120 km and 200 km, however one in 2030 is predicted

to approximately 500 km [20]. Therefore, the problem of battery performance is

expected to be solved.

On the other hand, diffusion of Photovoltaic (PV) generation is described as fol-

lows. Table 3 shows that installation target of PV generation in 2020 is set to twenty

times larger than in 2009. Table 3 also shows that installation amount of electric

power is predicted to 53 GW in 2030. As for PV performance and cost, Table 4

shows these targets. In 2012, additionally, Feed-In Tariff (FIT) was installed and
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Table 3: Installation target of PV (created based on data from [21])

Indicators 2005 2020 2030

Electric power (GW) 1.4 28 53

(Crude oil equivalent (kL)) 35 700 1300

Table 4: PV road map (created based on data from [23])

Indicators 2013 2020 2030

Cost of PV system (Thousands of yen/kW) 275 200 100

Cost of power generation (Yen/kWh) 23 14 7

Module conversion efficiency (%) 16 22 25

Rate of utilization (%) 13 15 15

Life of PV (years) 20 25 30

genuine diffusion of PV generation is expected [21]. However, improvement of PV

diffusion exposes a problem of surplus power. Concentration of PV generation inter-

connection causes power to flow back to electrical grid, that is called reverse power

flow, and worsens power quality [22]. Therefore, measures such as controlling PV

generation output is necessary.

In prospect of the above diffusion of EVs in the future, connecting EVs to elec-

trical grid, which is called Vehicle-to-Grid (V2G), has been studied [13, 24]. The

objective of V2G is stable power supply and cost reduction in installing renewable

energy. These researches postulate advantages of using EVs in order to cut peak

power by using EV batteries as buffers and to stabilize unstable output of renewable

energy. This study also assumes the existence of V2G and verifies that derivation

and flow of renewable energy in V2G by using simulations.

In power distribution through EV batteries, people transport power, and distri-

bution routes and distribution opportunities depend on humans’ decision making.

Therefore, behavior of power distribution system is not clear. In the environment

where stable electrical grid diffuses like Japan, especially, power distribution through

EVs is not necessary to provide power, and it is difficult to find new value in backup
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system. However, it is possible to find new value in PV power distribution system.

In urban areas, where population concentration and aggregation of social functions

progress, simultaneous diffusion of EV and PV allows people to generate and trans-

port power on a large scale. Therefore, this research makes the concept of user

participatory urban power distribution system to aggregate and distribute surplus PV

power generated in distributed locations by using EV. The social system is design

target in this research.
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Chapter 3 PV Power Distribution System through EVs

This chapter describes the integrated system composed of traffic system and power

system that is design target in this research. First, the outline of social system that

is design target is described. Next, Models and simulation parameters defining the

social system in MASim are described.

3.1 System Overview
This research tries to obtain a good design of the social system to distribute PV

power in the urban traffic system. Therefore, this research models traffic generated

by movements of EVs. Process for aggregating and distrusting PV power generated

in distributed locations through EVs proceeds simultaneously with power consump-

tion behavior of each human. This research verifies how PV power distribution sys-

tem changes values concerned with power distribution, such as the amount of power

leaded from electrical grid and the amount of power generated by PV and transported

by EVs, by using MASim.

Figure 3 shows the outline of PV power distribution system through EVs. In this

simulation, power use in homes and EV running are factors of power consumption.

On the other hand, electrical grid and PV generations are power supply sources. Each

EV determines an action plan every day and runs in accordance with the plan. Plans

are based on each power demand, surplus power, and the Origin-Destination (OD)

table. The OD table includes elements such as homes, offices, and supermarkets.

Surplus PV power generated in various locations is distributed to other places through

EVs.

More specifically, EVs with surplus power, which mean suppliers, and EVs with

capacity to charge, which mean consumers, stop at power exchange stations. The

power exchange station is a place with infrastructure facilities to charge batteries.

People with surplus power generated by home PV generators provide surplus power

in power exchange stations. In the other hand, people who don’t have PV genera-

tors at home and surplus power charge power in power exchange stations. Charging

and discharging through batteries at power exchange stations realize power transfer

between suppliers and consumers. However, if batteries at power exchange stations
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Figure 3: Schematic of PV power distribution system

don’t have sufficient power, power exchange stations lead from electrical grid as well

as normal charging stations.

Generally, if surplus PV power is expected to be generated, each home reduces

the amount of PV generation or reverse power to electrical grid. Reverse power flow

means power selling generally. However, reverse power flow should be inhibited

since reverse power flow worsens power quality [22]. Moreover, since there are

problems about PV power purchase and depreciation of PV power purchase price, it

is necessary to consider methods for using surplus PV power. Therefore, this research

considers sharing surplus PV power by humans participating this system worthy.

In this simulation, movements of EVs allow share of power among homes, which

resolves uneven PV distribution. This research searches system requirements to cre-

ate a good balance between suppliers’ amount of discharge and consumers’ amount

of charge.

Finding a good design which is the combination of conditions is difficult since it

is necessary to tune various conditions defining the system, such as power consump-

tion in each home, boundary conditions of agents’ behavior in providing surplus PV

power, and ways for installing power exchange station. Therefore, this research ex-
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Figure 4: Facility (home or power exchange station) power model

amines a method for obtaining a better social system design by evaluating the social

system in MASim, where agents simulate individual behavior, in order to design the

social system in consideration of human daily behavior.

3.2 Definition of Models
Facility power model and EV power model in the PV power distribution simulation

are defined as shown in Figures 4 and 5.

3.2.1 Facility Model

Figure 4 shows power input and output in facilities such as homes and power ex-

change stations. Facilities consume power by home electronics and feeding power

to EVs. Facilities also get power by leading from electrical grid, generating by PV

generators and deriving from EV batteries and facility batteries. Facilities can al-

ways lead from electrical grid as well as the actual world. Therefore, only PV power

and power derived from EV batteries are charged into facility batteries. For feeding

power to EVs and consumption by electronics, if storage amount of facility batteries

runs out, facilities lead from electrical grid. Conversely, if surplus power is gener-

ated by PV generation, facilities charge surplus power into facility batteries. If more

surplus power is generated and facility batteries are charged fully, facilities reverse

power to electrical grid. However, power exchange stations don’t have any elec-

tronics and PV generators. Thus, power exchange stations don’t generate power and
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consume power by electronics. In other words, only homes generate power by PV

systems and consume power by electronics. Once surplus PV power beyond home

consumption is charged into facility batteries at a certain point, facilities derive from

facilities batteries when needed. That is, facility batteries perform as buffers in order

to use PV power efficiently.

3.2.2 EV Model

First, power input and output in EVs are described. Figure 5 shows power input and

output in EVs. EVs derive power from EV battery and consume power by motor

when running. When EVs are parked in facilities, EVs charge power from facili-

ties or provide power of EV batteries for facilities. Charge from facilities changes

depending on remaining battery capacity of facilities. If facility batteries have suffi-

cient power, EVs derive power from facility batteries. If facility batteries don’t have

sufficient power EVs derive power from facilities after facilities lead power from

electrical grid. On the other hand, if EV batteries have sufficient power, EVs provide

power of EV batteries for facilities.

Next, rules of power transfer of EVs are described in detail. In this simulation,

each agent makes decisions individually in given simulation conditions and makes

actions such as moving, power consumption, and power transfer. This simulation

assumes that EVs are cooperative in power transfer on the presupposition that EVs

ensure sufficient power to consume in running. More specifically, each EV agent

has an action plan representing the EV agent moves from where to where. The EV

agent estimates the amount of power required to run on the basis of the action plan.

Each EV agent acts to always keep the amount of power that is sum of the esti-

mated amount and an extra margin. Under the presupposition, EV agents with sur-
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plus power generated by home PV generators stop at power exchange stations and

become suppliers providing power. On the other hand, EV agents that don’t have PV

generators at home and surplus power stop at power exchange stations and become

consumers charging power. Then, EV agents that are consumers bring back charged

power to home and consume.

Action rules of power transfer when EVs are parked in facilities are described as

follows. When EVs are parked in facilities, EV agents change power transfer actions

in accordance with the condition met first after checking the following conditions in

order from 1.

1. Condition If an EV agent is parked in a power exchange station and home has

surplus power and remaining battery capacity of the EV is sufficient,

Action The EV agent becomes a supplier. The EV agent provides power of

EV battery for battery of the power exchange station.

2. Condition If an EV agent is parked at home and remaining battery capacity

of the EV is not sufficient,

Action The EV agent derives power from home and charges EV battery.

3. Condition If an EV agent is parked at home and remaining battery capacity

of the EV is sufficient,

Action The EV agent provides power of EV battery for home.

4. Condition If an EV agent is parked at home and home has sufficient power

and EV battery is not full,

Action The EV agent derives power from home and charges EV battery.

5. Condition If an EV agent is parked in a power exchange station and home has

sufficient power and remaining battery capacity of the EV is not sufficient,

Action The EV agent becomes a consumer. The EV agent charges EV battery

from the power exchange station.

6. Condition If an EV agent is parked in a power exchange station and home

doesn’t have surplus power and EV battery is not full,

Action The EV agent becomes a consumer. The EV agent charges EV battery

from the power exchange station.

7. Condition Otherwise,

Action If the EV agent has a destination, the EV departs. If the EV agent has
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no destination, for example after getting home, the EV agent does nothing

and stays.

The above action rules simply represent that EVs are cooperative in power transfer

under the presupposition that EVs ensure sufficient power to consume in running.

Under these settings, this simulation calculates the amount of power: power leaded

from electrical grid, reverse power flow and power that suppliers provide and con-

sumers charge in power exchange stations.

3.3 Simulation Parameters
This study treats PV power destruction system through EVs as a design target. The

system is defined by some parameters concerned with social facilities at homes and

human behavior. Parameters in this simulation are described below. Setting values

and domain of parameters are also described. However, this simulation set param-

eters by assuming Kyoto City as a specific city. The urban space in the simulation

is divided into three parts: inner city, peripheral part, and suburban. Three parts are

allocated to three zones as a concentric circle based on the distance of the center of

the city. Inner city, peripheral part, and suburban is hereinafter referred to as zone 1,

zone 2, and zone 3 respectively. This research focuses on verification of PV power

distribution through EVs. Therefore, this research assumes that a social environ-

ment where PV generation diffuses to a certain level, and where PV power can be

distributed. This research uses parameter settings suitable for the social environment.

(1) Diffusion rate of PV generators

This parameter decides the number of homes with PV generators. The param-

eter also decides the amount of power provided for society. It is expected that

diffusion rate of PV generation is 23% in 20251). Therefore, this study sets dif-

fusion rate at 25% because PV generation is assumed to diffuse as described

above.

(2) PV generator placement pattern

This parameter represents the rate of PV generator placement in each city zone.

The parameter decides the placement of PV power supply sources. We can

1) Fuji Keizai: Research Series of Market by Demands 2013; Penetration Forecast Study of Resi-
dential Energy and Related Device by Area (2013)
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consider the example placement that many PV generators are installed to a new

residential area om suburban. For simplicity, however, This research installs PV

generators to each zone in an unbiased way.

(3) Participation rate of PV power distribution system

This parameter decides the number of EV owners who participate in the PV

power distribution system and provide power cooperatively. This parameter also

decides the potential amount of PV power distribution. This study sets this

parameter to 8 values: 20%, 30%, 40%, · · · , 80%, 90%.

(4) Acceptable range of the distance to station

This parameter represents system participants’ range of activities. In order to

provide surplus power generated PV generators, EVs stop in power exchange

stations deviating from the optimal original route. In this time, this parameter

decides the upper limit of the distance to power exchange station. This study

sets this parameter to 32 values: 50 m, 100 m, 150 m, · · · , 1550 m, 1600 m.

(5) Number of power exchange stations

This parameter represents the number of power exchange stations to share sur-

plus power. This parameter also decides the accumulation of surplus PV power.

It is difficult to determine the standard value because power exchange station

exist only in the system in this study. However, in the equipment vision of

charging infrastructures in Kyoto2), Kyoto City plans to install approximately

150 charging infrastructures in Kyoto City. The upper limit of the parameter is

set to about half of 150 because this simulation space is a part of Kyoto City.

This study sets this parameter to 8 values: 20, 30, 40, · · · , 80, 90.

(6) Power exchange station placement pattern

This parameter represents the placement rate of power exchange stations in each

city zone. This parameter also decides the location of collection and distribu-

tion of PV power. The location of power exchange stations affects behavior of

humans who participate in PV power distribution system. Therefore, this study

considers the biased placement in each city zone. This study sets the ratio of

zone 1 to zone 2 to zone 3 as 8 values: (2:1:1), (4:1:1), (1:2:1), (1:4:1), (1:1:2),

2) http://www.pref.kyoto.jp/denkizidousya/documents/visionlist.pdf
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Table 5: Simulation parameters

Parameters Ways Domain of definition

(1) PV diffusion rate (%) 1 25

(2) PV placement pattern 1 equally installed by regions

(3) Participation rate of new

system (%)

8 20, 30, · · · , 80, 90

(4) Acceptable range of the

distance to station (m)

32 50, 100, 150, · · · , 1550, 1600

(5) Number of stations 8 20, 30, 40, · · · , 80, 90

(6) Station placement pattern 8 (2:1:1), (4:1:1), (1:2:1), (1:4:1),

(1:1:2), (1:1:4), (3:2:1), (1:1:1)

(1:1:4), (3:2:1), (1:1:1). Both (2:1:1) and (4:1:1) represent the inner-city concen-

tration type. Both (1:2:1) and (1:4:1) represent the peripheral-part concentration

type. Both (1:1:2) and (1:1:4) represent the suburban concentration type. Each

value is different in the degree of concentration. (3:2:1) represents the inner-city

concentration type, where stations gradually decrease towards suburban. (1:1:1)

represents the even type.

Table 5 shows the above parameters.

It is possible to treat more parameters in MASim. However, technical devices

are needed to search an expanded solution space. Therefore, this study focuses on

investigating the possibility of the search method based on GA, and keeps down the

number of parameters for simplicity. Similarly, this study uses not real-valued but

discrete-valued parameters.
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Chapter 4 Simulation Platform

This chapter describes the simulation platform to simulate the social system as de-

scribed in Chapter 3.

4.1 Simulation Platform Overview
The simulation in this study is implemented as the integrated simulation composed of

traffic simulator based on massively multi-agent simulator, MATSim [25], and power

consumption simulator. Figure 6 shows the schematic of the simulator. Traffic sim-

ulator calculates traveling route including detours to power exchange stations, and

reproduction of driving behavior for each EV agent [26]. Power consumption simu-

lator calculates the amount of power leaded from electrical grid, the amount of PV

generation, and the amount of power consumption of EVs and homes. Event Man-

ager and Event Manager Connector act as intermediaries between traffic simulator

and power consumption simulator. Simulation Controller integrates them, and the

integrated simulation composed of traffic flow and power distribution is executed.

This simulation calculates traffic behavior and power consumption behavior for

each unit time. By iterating the calculation, the simulation calculates each agent’s

behavior for a day. Behavior for each unit time is calculated iteratively until time

becomes beyond 86400 seconds, because a day has 86400 seconds. This research

sets a unit time as 5 seconds. Figure 7 shows a flowchart of the process.

First, this simulator receives a parameter set defining a social system as input,

and initializes the simulation environment. Second, the traffic simulator calculates

Simulation
Controller

Event Manager
Connector

Traffic Simulator
Power Consumption

Simulator

Send events

Control Control

Control

Traffic Event Manager
Power Consumption

Event Manager

Notify of arrival at a facility Notify of a need
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Notify of a need
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Notify of a arrival at a facility

Send events

Send events Send events

Figure 6: System diagram of simulation platform
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traffic behavior in a unit time. Travel distance for each agent is determined by calcu-

lations of traveling routes and traffic behavior for each agent in a unit time. Third, the

power consumption simulator calculates power consumption behavior in a unit time.

The amount of power consumption in each home and the amount of PV generation

are calculated on the basis of power information given in advance. The power infor-

mation represents how much power each home consumes and generates at a certain

period of time. For example, consumed power is 0.8 kW, and PV generated power is

7 kW between ten and eleven. The power consumption simulator determines whether

a EV agent charges or provides power in the facility if the power consumption simu-

lator receives an event of arrival at a facility. The power consumption simulator also

calculates whether EV agents stop in power exchange stations deviating from the

optimal original route or not. If an EV stops in a power exchange station, the power

consumption simulator notifies the traffic simulator of an event that requires recalcu-

lations of the change of the destination and the traveling route in order to change the

optimal original route. Event Manager and Event Manager Connector transfer events

between the traffic simulator and the power consumption simulator. Each simulator

notifies each Event Manager of events. Then, each Event Manager notifies the other

simulator through Event Manager Connector.

4.2 Traffic Simulator
The traffic simulator conducts two types of calculations. One is the calculation of

EV routing. The other is the calculation of traffic behavior in each unit time.

The traffic simulator calculates routing at the beginning of a day in a simulation.

Each EV has an action plan representing the OD and the departure time. The traffic

simulator calculates the traveling route on the basis of the action plan and Dijkstra’s

algorithm. The traffic simulator calculates the traveling rote so that the time distance

is the shortest. The time distance that an EV travels on each link is calculated on the

basis of the simulation results of the previous day. Each EV departs from its own

departure place to its own destination at the departure time and runs on the selected

route.

The traffic behavior is calculated in each unit time in a day in a simulation. To

represent traffic behavior of each EV and traffic congestion simply, this research uses
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the car-following model. An EV agent presses the accelerator and the break so that

the EV agent run at the desired speed. This research sets the desired speed as 30

km/h. If the speed is less than the desired speed, an EV agent presses the accelerator.

If the speed is higher than the desired speed, an EV agent presses the brake. On the

other hand, if there is another vehicle in front, an EV agent runs keeping a certain

distance with the front vehicle. That is, if the speed is less than the desired speed and

the distance between vehicles is less than a certain distance, an EV agent presses the

brake. Pressing the accelerator and the brake determines the speed in a unit time.

After determining the speed in a unit time, the traffic simulator calculates the

traveling distance in a unit time. An EV agent has location information: which link

the EV runs on, and which point on the link the EV exists. The EV travels the

distance based on the calculated speed from the point on the link. If the EV reaches

the end point of the link, the EV moves the next link. Vehicle capacity is set for each

link. If the number of EVs running on a link is more than the capacity, the EV trying

to enter the link waits at the starting point of the link and cannot enter the link. That

represents traffic congestion.

The traffic simulator iterating the above calculations in a unit time, each EV

moves its own departure place to its own destination.

4.3 Power Consumption Simulator
The power consumption simulator calculates power consumption behavior of facili-

ties and EVs in a unit time.

As described in Section 3.2.1, facilities are homes and power exchange stations.

Homes consume and generate power basically. This research splits a day into 24 time

slots, which means each time slot has one hour. The power consumption simulator is

given power information about consumed power and power ratio to PV related power

in each time slot. The amount of power consumption and the amount of generation

are calculated on the basis of the power information. If the amount of power con-

sumption is more than the amount of generation, the home derives power from the

home battery or leads power from electrical grid. On the other hand, if the amount

of generation is more than the amount of power consumption, the home accumu-

lates power in the home battery. If the home battery is full, the home reverse power
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to electrical grid. Moreover, power exchange with the EV is based on the action

rules in Section 3.2.2. By that means, the amount of power exchange with batteries,

electrical grid, and EVs are calculated.

The amount of power in power exchange stations is calculated as with homes.

Power exchange stations exchange power with EVs on the basis of the action rules in

Section 3.2.2. If the amount of power provided by EVs is more than the amount of

power charged by EVs, the power exchange station accumulates power in the facility

battery. On the other hand, the amount of power charged by EVs is more than the

amount of power provided by EVs, the power exchange station derives power from

the facility battery or leads power from electrical grid as with homes.

EVs consumes power in running. EVs also exchanges power on the basis the

action rules in Section 3.2.2. Consumed power in running, charged power, and pro-

vided power are set. On the basis of these power, the amount of power consumption

in running, the amount of charging power, and the amount of providing power are

calculated in a unit time.
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Figure 7: Flowchart representing the simulation process
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Chapter 5 Social System Design based on GA-Driven
Multi-Agent Simulations

This chapter describes the proposed method for designing semi-optimal social sys-

tem.

It is difficult to determine the combination of conditions that define behavior of

complex social systems by humans. This research aims to obtain a semi-optimal de-

sign by determining the combination of conditions. This research treats the combi-

nations of conditions as parameters in MASim. The number of parameters becomes

enormous, because urban social systems is massive and complex. Exhaustive search

is necessary to obtain a semi-optimal design by analyzing structure of social systems

in this situation. However, the number of parameters is enormous, and the search

space is large. Thus, it is difficult to decide a combination of parameters to be next

evaluated by MASim. Therefore, this research proposes the method for obtaining a

semi-optimal design through the combination of MASim and GA, which is one of

EC. By using the search algorithm of GA, the proposed method decides MASim to

be next executed and controls a lot of MASim needed to be executed.

5.1 Approach Overview
Figure 8 shows the schematic of the proposed method. First, the proposed method

models the target social system and defines the evaluation function. As for modeling,

attribute variables and domains of the variables are determined. The attribute vari-

ables represent features of the social system. As for the evaluation function, the pro-

posed method determines the function to calculate quantitative values representing

desirability of the social system on the basis of results of the simulation. Generally,

the desirability of the social system is determined on the basis of social indicator. The

above settings are described as Initial settings in Figure 8 and are treated as input.

Secondly, as shown in the center of Figure 8, the proposed method iterates the

following three steps:

1. Generate a parameter set, which is a candidate solution

2. Run a simulation based on the parameter set

3. Evaluate results of the simulation
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Figure 8: Schematic of solution process

The proposed method searches solutions with higher evaluation values by iterating

the above steps.

The set of conditions defining behavior of the target social system is represented

C. Each condition is also represented ci. Each ci takes arbitrary number of values

and is referred to as ci = {vi1, vi2, · · · , vi j}, which means the range of each condition.

A parameter set, which is a candidate solution, is referred to as a vector d⃗ = {vm|vm ∈
cm,m = 1, 2, · · · , |C|}, assigning a each value to a each condition. MASim calculates

behavior of agents, receiving an arbitrary candidate solution d⃗k and a set of agents

A as input. In other words, a simulation environment is set on the basis of d⃗k, and a

design of the social system is generated. In the generated virtual social environment,

a agent al ∈ A decides behavior and acts on the basis of its own behavior model. After

the simulation, results of the simulation are evaluated on the basis of the evaluation

function, and the evaluation value of the candidate solution d⃗k is determined. On

the basis of the evaluation, the proposed method continues to calculate candidate

solutions nearby d⃗k. If the proposed method reaches a termination condition, the

process of finding solutions stops. For example, termination conditions are defined

as a limit number of evaluations of MASim or a target value of the evaluation value.

If a solution space is large and conditions defining behavior social systems are

mutually dependent, calculating a precise solution difficult in general. Therefore,
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this research attempts to find solutions by using finding process based on GA, which

is one of EC. The proposed method treats d⃗k, a candidate solution of the social sys-

tem, as a chromosome in GA. A social system is expanded on the basis of design

information contained in one chromosome, and MASim is executed. Emergent phe-

nomena in simulations and the evaluation value determine a fitness value of a indi-

vidual with the chromosome. New individuals are generated by selection, crossover,

and mutation based on GA. The proposed method obtains useful system designs for

an arbitrary social indicator by iterating similar processes.

5.2 Process of Finding Semi-Optimal Design based on GA
The process of finding a semi-optimal solution by the combination of MASim and

GA is described. This finding process is based on the search algorithm of GA. The

process uses MASim as the function to calculate fitness values in GA. Thus, Eval-

uations of an arbitrary social system are conducted on the basis of accumulation of

many agents’ actions.

5.2.1 Encoding from Chromosomes to Parameter Sets

First, individuals used in GA are described. The proposed method encodes each pa-

rameter, as described in Section 3.3. Then an individual with a chromosome repre-

senting a design is generated. As described above, each parameter means a condition

representing the social system. The objective of these calculations is to obtain a set

of conditions that generate more desirable phenomena socially.

As described in Section 3.3, both parameters (1) and (2) are fixed. Therefore,

this research treats parameters (3) – (6) as genes. Parameters (3), (5), and (6) contain

8 values respectively, which means 3 bits. Parameter (4) contains 32 values, which

means 5 bits. That is, a parameter set is represented as a chromosome that is a sum

of 14 bits in length. Thus, a 14-bit binary code is divided into 3 bits, 5 bits, 3 bits,

and 3 bits, and each part is assigned to each parameter. For example, there is a chro-

mosome referred to as “00111001100101”. First, the chromosome is divided into

“001”, “11001”, “100”, and “101”. Second, each part is decoded into each geno-

type, as “{(3), (4), (5), (6)} = {1, 25, 4, 5}”. Finally, each genotype is encoded into

each parameter on the basis of Table 6. The above example is encoded as follows:

“{(3), (4), (5), (6)} = {30%, 1300 m, 60, (1:1:4)}”.
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Table 6: Correspondence table between genes and parameters

Genotypes

Parameters 0 1 2 · · · 6 7

(3) 20 30 40 · · · 80 90

(5) 20 30 40 · · · 80 90

(6) (2:1:1) (4:1:1) (1:2:1) · · · (3:2:1) (1:1:1)

Genotypes

Parameters 0 1 2 · · · 30 31

(4) 50 100 150 · · · 1550 1600
(3) Participation rate of new system (%)

(4) Acceptable range of the distance to station (m)

(5) Number of stations

(6) Station placement pattern


5.2.2 Process of Finding Semi-Optimal Design

Figure 9 shows the flowchart representing the finding process based on GA. The

finding process is described as follows.

1. Generate some individuals randomly, regard the individuals as an initial pop-

ulation. The chromosome of each individual contains design information of a

social system.

2. Generate a environment for MASim from each individual. First, as described in

Section 5.2.1, encode chromosomes into parameter sets. Then, initialize multi-

agent simulators on the basis of information contained in genes on chromo-

somes. Environments surrounding agents and agents’ range of actions are de-

cides, but each agent’s behavior model is not defined. Agents determine own

behavior on the basis of behavior model, as described in Section 3.2.

3. Run MASim in social systems and simulation environments generated from in-

dividuals.

4. Evaluate results of simulations on the basis of a social indicator. Treat the eval-
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Figure 9: Flowchart representing search algorithm based on GA

uation values as fitness values F in GA. The evaluation function is described in

Section 5.3.

5. Return the best solution at the time if a termination condition is reached. The

solution is the design derived by the proposed method. For example, a termina-

tion condition is defined as a target value of fitness values F. Go to the next step

if a terminal condition isn’t met.

6. Repeat the following steps to produce a child population. Choose individuals

included in the population for the next generation from the child population.

(a) Select parent individuals on the basis of fitness values F.

(b) Apply crossover operation to the selected parent individuals.
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(c) Apply mutation operation to the child individuals applied crossover opera-

tion.

7. Go back to 2.

5.3 Evaluation Function
In this study, the fitness value F is higher if the social system creates a better bal-

ance in power transfer between suppliers and consumers in power exchange stations.

This research considers that social utility is high and the system is good if surplus

PV power are transferred in various locations, and PV power is aggregated and dis-

tribute in the PV power distribution system. This research also considers that the

fitness value F is higher if the amount of reverse power flow decreases. However,

this research considers it important not only that the amount of reverse power flow

decreases, but also that aggregated PV power is distributed well. Thus, this research

uses the evaluation function concerned with a better balance in power transfer. There-

fore, the fitness value F is defined as above. More specifically, the fitness values F is

described as follows.

F =
C

C − P
.

C : The total amount of power charged by EVs in power exchange stations.

P : The total amount of power provided by EVs in power exchange stations.

The total amount of power charged means the sum of power that all EVs charge

in power exchange stations in a day. The total amount of power provided also means

the sum of power that all EVs provide in power exchange stations in a day. It is quite

unlikely that PV power covers all consumed power, and it seems that the total amount

of power charged in power exchange stations is larger than that the one provided

in power exchange stations. Therefore, this research assumes P < C. Since this

assumption leads 0 < C − P, both the numerator and the denominator of F are non-

negative number. F > 1 holds because C > C − P holds naturally. Accordingly, the

closer C : P is to 1 : 1, the higher F is. That means the fitness value F is higher

if the social system creates a better balance in power transfer between suppliers and

consumers.
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Chapter 6 Experiments

This chapter describes experiments that apply the proposed method to the PV power

distribution system, the results, and the discussion.

This research performed two types of experiments. One was in 9000 EVs, and

the other was in 20000 EVs. To verify the proposed method, this research conducted

pre-analysis of the solution space in case of 9000 EVs, which was the small-scale

problem. Then, discussion about results is described.

6.1 Settings
This section describes the settings of PV power distribution system and the settings

of GA.

6.1.1 Settings of PV Power Distribution System

This research used the actual Kyoto City road network as the road network in simu-

lations. This research generated the road network on the basis of the numerical map

data of Zenrin Company. The road network has approximately 7000 links and 14000

nodes and is approximately ten kilometers square. This research ran agents simu-

lating vehicles in the actual world on the road network. All vehicles were EVs in

the experiments. This research performed two types of experiments: 9000 EVs and

20000 EVs.

This research assigned OD for each EV agents on the basis of a Person Trip

Survey in 2000 [27]. Table 7 shows the number of vehicles which depart from one

area O to another area D. For example, the (1, 2)-th entry means that 194 vehicles

depart from Kita-ku to South Sakyo-ku. On the basis of percentage of total vehicles

in Table 7, the number of vehicles departing from area O to area D is determined.

Then, one node is selected from the road network representing area O randomly.

The node of area O is the departure place. One node is also selected from the road

network representing area D randomly. The node of area D is the destination. As

a result, OD for an EV is determined. Table 8 shows the number of vehicles which

depart from one area in a time slot. For example, the (1, 1)-th entry means that

275 vehicles depart from Kita-ku between 0:00 and 1:00. Similarly, on the basis of

Table 8, the departure time for each EV is determined. This research fixes the random
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Table 7: OD table (created based on data from [27])

Area ID
To

3111 3112 3121 3122 3123 3124 3151

from

3111 875 194 186 165 104 23 145

3112 186 748 140 152 111 54 81

3121 197 142 230 130 98 44 111

3122 177 136 150 373 224 67 251

3123 111 115 98 204 400 73 189

3124 29 54 29 62 84 121 54

3151 157 96 96 263 177 35 1059

Area ID Name

3111 Kita-ku（北区）

3112 South Sakyo-ku（左京区南部）

3121 Kamigyo-ku（上京区）

3122 Nakagyo-ku（中京区）

3123 Shimogyo-ku（下京区）

3124 Higashiyama-ku（東山区）

3151 Ukyo-ku（右京区）

seed; therefore, all ODs are same in all simulations. Each EV agent has one departure

place, such as home, and one destination, such as an office and an supermarket. The

departure place is on the above node from area O, and the destination is on the above

node from area D. First, each EV agent departs from its own departure place, and

goes to its own destination. After arriving at the destination, each EV agent stays

there for several hours. Then, each EV agent goes back to the departure place. That

is, each EV agent moves twice. Each EV agent selects an arbitrary route and run

along the route on the basis of its own assigned OD.

This research sets parameters of PV generators, batteries, and EV in reference

to [20, 21]. PV generators is uniform in performance, and this research excluded

weather conditions. PV generated power is 10 kW in this research because generated
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Table 8: Time table for OD (created based on data from [27])
PPPPPPPPPPPP

Time slot

Area ID
3111 3112 3121 3122 3123 3124 3151

0:00 – 1:00 275 333 105 446 412 975 342

1:00 – 2:00 167 187 278 212 302 848 132

2:00 – 3:00 163 202 61 229 379 479 181

3:00 – 4:00 43 54 42 133 101 195 93

4:00 – 5:00 49 102 130 93 363 172 474

5:00 – 6:00 680 178 182 0 278 45 622

6:00 – 7:00 1526 1593 672 797 706 555 2835

7:00 – 8:00 5405 5837 3036 2939 2551 1154 10265

8:00 – 9:00 9990 7658 3801 4645 4269 1472 11664

9:00 – 10:00 6439 5844 3333 4398 4667 1868 7434

10:00 – 11:00 6571 6690 3733 7204 6021 1633 7109

11:00 – 12:00 5086 6579 4383 6556 5476 1788 8433

12:00 – 13:00 3978 4806 3300 4571 4142 1196 6693

13:00 – 14:00 5765 4919 3877 4660 6802 2607 7006

14:00 – 15:00 5456 5041 4348 6324 6643 1808 6035

15:00 – 16:00 5242 4491 3786 4761 7505 1508 6780

16:00 – 17:00 5992 5919 3191 5105 7101 2192 6880

17:00 – 18:00 7597 7386 5015 7242 7168 2547 10326

18:00 – 19:00 6297 7142 3791 6966 7517 2247 9299

19:00 – 20:00 4113 4006 2698 4464 5488 1240 6394

20:00 – 21:00 2504 3560 1599 3596 3309 1060 4120

21:00 – 22:00 1915 3576 1591 2994 2571 1168 2693

22:00 – 23:00 1258 1705 1051 2458 1455 1335 1970

23:00 – 24:00 913 848 843 2157 1316 817 934

power of PV generator for homes is defined as less than 10 kW in Feed-In Tariff

and PV conversion efficiency is considered to be improved as described in Section

2.3. Power generation efficiency is the highest at noon in this research. Therefore,
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the amount of PV generation in a day is the same. More specifically, this research

assumes weekday in summer and sets power ratio to PV related power in each time

slot as shown in Table 9. For example, if PV related power is 10 kW, generated power

is 7.5 kW between 12:00 and 13:00. Similarly, this research sets consumed power

at homes in each time slot as shown in Table 10. For example, a home consumes

0.6 kW of power between 0:00 and 1:00. As for home batteries, only homes with

PV generators have batteries. The home battery capacity is 5 kWh and the initial

amont of home battery power is 0 kWh. As for EVs, there are three types of battery

capacity of an EV: 20 kWh, 50 kWh, and 100 kWh. The initial amount of EV battery

is the amount of full capacity. This research set the ratio of (the number of EVs

with 20-kWh battery:the number of EVs with 50-kWh battery:the number of EVs

with 100-kWh battery) as (1:3:1). For simplicity, power consumed of EVs is 0.75

kW; therefore, mileage per charge is 200 km if EVs with 20-kWh battery run at an

average of 15 km/h.

Table 11 shows the above settings.

6.1.2 GA Settings

This research used DGA (island model), which is one of GA and has high parallel

efficiency. This research reduced latency in migrations because DGA was an asyn-

chronous model in this research. For the realization of asynchronous DGA, each

sub population has a mailbox to receive immigrants. As for emigration, each sub

population sends individuals to emigrated sub populations at migration intervals. As

for immigration, each sub population checks its own mailbox at migration intervals.

If the mailbox receives individuals, the individuals immigrate to the sub population.

The above process realizes asynchronous migrations. At this time, this research set

parameters of DGA on the basis of [17]. Table 12 shows parameters of DGA.

As described above, this research kept down the size of solution space. Therefore,

this research set the limit number of generations to 100 generations, which was a

termination condition. This research also set population size to 32. Since the number

of islands is 4, each sub population size is 32/4 = 8. It is considered that the optimal

mutation rate is 1/L, where L is chromosome length. Thus, this research set mutation

rate to 1/L = 1/14 ≈ 0.08.

[17] describes that difference in selection methods is small. This research used
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Table 9: Power ratio to PV related power in each time slot 3)

Time slot Power ratio (%)

0:00 – 1:00 0.0

1:00 – 2:00 0.0

2:00 – 3:00 0.0

3:00 – 4:00 0.0

4:00 – 5:00 0.0

5:00 – 6:00 0.0

6:00 – 7:00 0.06

7:00 – 8:00 0.03

8:00 – 9:00 0.47

9:00 – 10:00 0.64

10:00 – 11:00 0.73

11:00 – 12:00 0.77

12:00 – 13:00 0.75

13:00 – 14:00 0.70

14:00 – 15:00 0.56

15:00 – 16:00 0.41

16:00 – 17:00 0.23

17:00 – 18:00 0.06

18:00 – 19:00 0.0

19:00 – 20:00 0.0

20:00 – 21:00 0.0

21:00 – 22:00 0.0

22:00 – 23:00 0.0

23:00 – 24:00 0.0

tournament selection as a selection method. This research also used elitist strategy.

In this research, one individual is handled over to the next generation.

3) Tables 9, 10 are created based on data from Advanced Technology Research Laboratories, Pana-
sonic Corporation.
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Table 10: Consumed power at homes in each time slot 3)

Time slot Consumed power (kW)

0:00 – 1:00 0.60

1:00 – 2:00 0.52

2:00 – 3:00 0.44

3:00 – 4:00 0.42

4:00 – 5:00 0.40

5:00 – 6:00 0.42

6:00 – 7:00 0.58

7:00 – 8:00 0.96

8:00 – 9:00 1.00

9:00 – 10:00 0.88

10:00 – 11:00 0.84

11:00 – 12:00 0.76

12:00 – 13:00 0.84

13:00 – 14:00 0.80

14:00 – 15:00 0.72

15:00 – 16:00 0.78

16:00 – 17:00 0.84

17:00 – 18:00 1.10

18:00 – 19:00 1.20

19:00 – 20:00 1.40

20:00 – 21:00 1.32

21:00 – 22:00 1.36

22:00 – 23:00 1.18

23:00 – 24:00 0.94

[17] also describes that random ring is good with regard to migration topology.

For simplicity, however, this research used bi-directional ring. Furthermore, [17]

describes that performance of method for selecting migrants depends on target prob-

lems. However, they claims that individuals with high fitness values should not be
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Table 11: Settings of PV power distribution system

Parameters Values

Road network 7000 nodes and 14000 links

Number of EVs 9000 or 20000

PV generation capacity (related power) 10 kW

Home battery capacity 5 kWh

EV battery capacity 20 kWh:50 kWh:100 kWh = 1:3:1

Consumed power of EVs 0.75 kW

Battery charge and discharge efficiency 1.0

replaced by immigrants. Therefore, this research used tournament selection to se-

lect emigrants as with normal selection method, and used random selection to select

individuals replaced by immigrants.

6.1.3 Machine Specification

This research conducted experiments on the machine using Intel Xeon Processor:

2.67 GHz, 12 cores, and 24 threads. In the experiment with 9000 EVs, it takes

approximately 15 minutes to run one simulation. In the experiment with 20000 EVs,

it takes approximately 25 minutes to take run one simulation. This research allocated

three cores to each sub population; therefore, it takes three times as long as running

one simulation to run simulations in one generation. Since the termination condition

is the number of generation reaches 100, to conduct the experiment with 9000 EVs

takes

100 (generations) · 15 (minutes) · 3 = 4500 (minutes) ≈ 3.1(days).

On the other hand, to conduct the experiment with 20000 EVs takes

100 (generations) · 25 (minutes) · 3 = 7500 (minutes) ≈ 5.2 (days).

6.2 Pre-Analysis of Solution Space
GA is a search method for getting a good approximate solution close to the opti-

mal solution. However, it doesn’t known how close the approximate solution is to
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Table 12: GA settings

Parameters Values

Chromosome length 14 bits (= L)

Population size 32

Number of islands 4

Limit number of generation 100

Selection method Tournament selection

Tournament size 4

Crossover rate 1.0

Crossover method One-point crossover

Mutation rate 0.08 (= 1/L)

Mutation method Bit string mutation

Migration interval 5

Migration rate 0.5

Migration topology Bi-Directional ring

Emigrant method Tournament selection

Immigrant method Random

the optimal solution. Therefore, this research analyzed the solution space for PV

power distribution system through EV. More specifically, this research conducted a

full search for the solution space in the experiment with 9000 EVs. This research

analyzed how close the derived solution is the optimal solution by the full search.

This research conducted the full search in 12 parallel on the machine using In-

tel Core i7-3960X Processor: 3.3 GHz, 6 cores, and 12 threads This research ran

MASim for 214 = 16384 designs because chromosome length is 14 bits. Since it

takes approximately 15 minutes to run one simulation, the full search takes

16384 (trials)/12 (threads) · 15 (minutes) = 20480 (minutes) ≈ 14.2 (days).

Tables 13, 14 show results of the full search. Table 13 shows four parameter sets:

the worst fitness value, the median fitness value, the mean fitness value, and the best

fitness value in all parameter sets. The parameter set with the best fitness value means
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Table 13: Comparison of parameters in worst, median, mean, and best fitness in full

search (9000 EVs)

Parameters Worst Median Mean Best (Optimal)

(3) Participation rate of new

system (%)

20 60 90 90

(4) Acceptable range of the

distance to station (m)

50 1000 350 100

(5) Number of stations 20 50 30 20

(6) Station placement pattern (1:2:1) (3:2:1) (1:1:2) (1:1:2)

Fitness 1.013 1.108 1.220 1.428

Table 14: Comparison of power data in worst, median, mean, and optimal fitness in

full search (9000 EVs)

Total power consumption (MWh) Worst Median Mean Best (Optimal)

EVs provide for stations 0.06 6.15 6.05 2.73

EVs charge from stations 4.66 63.28 33.34 9.21

Stations lead from grid 4.37 41.97 9.44 2.68

EVs consume 3.632 3.89 3.74 3.66

Homes lead from grid 93.33 92.79 95.99 94.35

Homes reverse power 85.47 79.93 81.18 84.35

the optimal solution in all solutions. Table 14 shows each power data in parameter

sets in Table 13.

Results of the full search show two trends. One is that the fitness value is high

if the participation rate of PV power distribution system is high. The other is that

the fitness value is high if acceptable range of the distance to station is short. As for

acceptable range of the distance to station, the parameter in all solutions from the

second best to the thirteenth best is 50 m, although the one in the optimal solution

is 100 m. That is, the second best solution where the parameter is 100 m is the

fourteenth best solution in all solutions. Thus, the solution space is not unimodal,
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but multimodal.

Moreover, the results show the fitness values in more than half of solutions are

lower than the mean one because the median fitness value is lower than the mean

one. Actually, the mean fitness value is the approximately 1000th best in all 16384

solutions. Many solutions have the low fitness values, and the number of solutions

with high fitness values is small.

6.3 Results
Figures 10, 12, 14 and Tables 15, 17 show results in the experiment with 9000 EVs.

Figures 11, 13, 15 and Tables 16, 18 show results in the experiment with 20000 EVs.

Figure 10 shows the transition of the best fitness values in all individuals in the

population. Figure 11 shows the transition of the mean fitness values in all individu-

als in the population. In the experiment with 9000 EVs, an increase of fitness values

stops around 20th generation. This means the convergence to a local solution. Then,

fitness values escape from the local solution around 75th generation, and increase.

In the experiments with 20000 EVs, fitness values converge around 10th generation.

Subsequently, fitness values don’t increase. Despite using elitist strategy, the best

fitness value decreases at 11th generation. This means the best is replaced by immi-

grants accidentally when replaced individuals is selected randomly in the migration.

For the same reason, the best fitness values decreases at 86th generation in the exper-

iment with 9000 EVs. In both experiments, the mean fitness values are on upward

trends.

Figures 12, 13 show the transition of the best fitness values in each sub popula-

tion. Fitness values are on upward trends as well as Figures 10, 11. In the experiment

with 9000 EVs, fitness values improve step by step in each sub population, and then

good solutions are shared by migrations. By contrast, in the experiment with 20000

EVs, the solution with the high fitness value is found in Sub-Population2, and then

the solution is shared amount other sub populations by migrations.

Figures 14, 15 show the transition of the mean fitness value in each sub popula-

tion. In both experiments, the mean fitness values change significantly in each sub

population. In early generations, fitness values improve significantly, and then re-

main unchanged. This results from natural selection, which is one of characteristics
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Figure 10: Fitness in each generation (9000 EVs)
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Figure 11: Fitness in each generation (20000 EVs)

of GA. Individuals with low fitness values are eliminated, and individuals with high

fitness values are selected.

Tables 15, 16 show three parameter sets: the worst fitness value, the mean fit-

ness value, and the best fitness value in all parameter sets searched by the proposed

method. The parameter set with the best fitness value means the approximate so-

lution derived by the proposed method. Pre-analysis in Section 6.2 reveals that the
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Figure 12: Best fitness in each island (9000 EVs)
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Figure 13: Best fitness in each island (20000 EVs)

derived approximate solution has the second best fitness value in all solutions in the

experiment with 9000 EVs. In the experiment with 20000 EVs, the derived approx-

imate solution shows the same tendency as that in the experiment with 9000 EVs,

expect the number of stations.

Table 17 shows each power data in parameter sets in Table 15. Table 18 also

shows each power data in parameter sets in Table 16. The solution, where the ratio
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Figure 14: Mean fitness in each island (9000 EVs)
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Figure 15: Mean fitness in each island (20000 EVs)

of (the amount of power provided by EVs in power exchange stations:the amount of

power charged by EVs in power exchange stations) is close to 1:1, is derived on the

basis of the evaluation function.

The total amount of power leaded from electrical grid is sum of that in homes and

that in power exchange stations. In the experiment with 9000 EVs, the total amounts

in worst, mean, and best fitness values are calculated as follows: 6.15+84.23 = 97.68
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Table 15: Comparison of parameters in worst, mean, and best fitness (9000 EVs)

Parameters Worst Mean Best

(3) Participation rate of new

system (%)

20 70 90

(4) Acceptable range of the

distance to station (m)

50 100 50

(5) Number of stations 30 70 80

(6) Station placement pattern (3:2:1) (1:4:1) (1:4:1)

Fitness 1.016 1.221 1.426

Table 16: Comparison of parameters in worst, mean, and best fitness (20000 EVs)

Parameters Worst Mean Best

(3) Participation rate of new

system (%)

20 80 90

(4) Acceptable range of the

distance to station (m)

50 100 50

(5) Number of stations 50 90 50

(6) Station placement pattern (4:1:1) (4:1:1) (1:2:1)

Fitness 1.026 1.279 1.532

MWh in the worst, 6.15 + 93.89 = 100.04 MWh in mean, and 2.66 + 94.29 =

96.95 MWh in the best. The solution with the best fitness values achieves 0.7%

power saving as compared to the solution with the worst fitness value. The solution

with the best fitness values also achieves 3.0% power saving as compared to the

solution with the mean fitness value. Similarly, in the experiment with 20000 EVs,

the total amounts in worst, mean, and best fitness values are calculated as follows:

11.82+206.95 = 218.77 MWh in the worst, 8.44+210.06 = 218.5 MWh in the mean,

and 2.12+209.82 = 211.94 MWh in the best. The solution with the best fitness values

achieves 3.1% power saving as compared to the solution with the worst fitness value.
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Table 17: Comparison of power data in worst, mean, and best fitness (9000 EVs)

Total power consumption (MWh) Worst Mean Best

EVs provide for stations 0.08 2.26 1.97

EVs charge from stations 4.70 12.49 6.62

Stations lead from grid 4.38 6.15 2.66

EVs consume 3.64 3.66 3.64

Homes lead from grid 93.30 93.89 94.29

Homes reverse power 85.44 84.23 84.65

Table 18: Comparison of power data in worst, mean, and best fitness (20000 EVs)

Total power consumption (MWh) Worst Mean Best

EVs provide for stations 0.31 5.98 4.45

EVs charge from stations 12.60 27.66 12.80

Stations lead from grid 11.82 8.44 2.12

EVs consume 8.20 8.25 8.21

Homes lead from grid 206.95 210.06 209.82

Homes reverse power 187.48 184.34 185.73

The solution with the best fitness values also achieve 3.0% power saving as compared

to the solution with the mean fitness value.

The derived solutions in both experiments are described as follows. In the experi-

ments with 9000 EVs and 20000 EVs, the total amounts of power provided by EVs in

power exchange stations are 1970 kWh and 4450 kWh, respectively. Generally, the

amount of power consumption at home in a day is approximately 10 kWh4). There-

fore, the amount of power consumption for 200 homes and the amount of power

consumption for 450 homes are aggregated in power exchange stations, respectively.

The fitness values are high not because the amount of power provided by EVs is

large, but because the amount of power charged by EVs is small.

4) The Federation of Electric Power Companines of Japan: Graphical Flip-chart of Nuclear & Energy
Related Topics (2014).
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6.4 Discussion
Pre-analysis in Section 6.2 reveals that the derived approximate solution has the sec-

ond best fitness value in all solutions in the experiment with 9000 EVs. The de-

rived solution is in the top 0.02% of all solutions since the number of all solutions

is 214 = 16384. That is, the proposed method obtained not the optimal solution,

but a good approximate solution. Therefore, in the experiment with 9000 EVs, the

proposed method performed well.

The author compares the derived solution in Table 17 and the optimal solution

in Table 6.2. The total amounts of power leaded from electrical grid in the derived

approximate solution and the optimal solution are 96.95 MWh and 97.03 MWh, re-

spectively. Both solutions achieve approximately 3% power saving as compared to

the solution with the mean fitness value. That is, there is little difference in power

saving between the derived approximate solution and the optimal solution. However,

power transfer in power exchange stations in the optimal solution is more active than

that in the derived approximate solution. Therefore, the optimal solution is better

than the derived approximate solution, but the derived approximate solution obtains

a result similar to that of the optimal solution in power saving.

It is unlikely that the nature of the problem with 9000 EVs is dramatically differ-

ent from one with 20000 EVs. Therefore, the proposed method is expected to find

a good solution in the experiment with 20000 EVs although this research doesn’t

conduct the full search for the solution space in the experiment with 20000 EVs. The

proposed method derived the approximate solution with the high fitness value in the

experiment with 20000 EVs as well as the experiment with 9000 EVs. Moreover,

the solution achieves approximately 3.0% power saving as compared to the others.

However, in comparing parameter sets of derived approximate solutions, there is a

difference in the number of stations. The other parameters are similar. It seems that

in the case of the small number of EV agents, the opportunity of power transfer de-

creases and power cannot be transferred well if the number of stations is not large.

However, it seems that in the case of large number of EV agents, the opportunity of

power transfer increases and power can be transferred well even if the number of sta-

tions is not large. After searching coarsely in the small-scale simulation environment

and in the small number of agents , the method for searching finely in the large-scale
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simulation environment and in the large number of agents is considered to be useful

in order to improve search efficiency. However, it is necessary to be careful about

using the method because the nature of problems changes possibly.

Results of the experiments showed two trends. One is that the fitness value is

high if the participation rate of PV power distribution system is high. The other is

that the fitness value is high if acceptable range of the distance to station is short.

Therefore, the proposed method can be expected to obtain better solutions by fixing

two parameters mentioned above and searching the other parameters in detail. It

is necessary to search the parameter representing station placement pattern in more

detail, since the parameter were set roughly in this research.

Next, discussion about computational complexity of the proposed method is de-

scribed as follow. There are the following environment variables in the proposed

method.

g Limit number of generation (termination condition) .

t Time required to run one simulation.

p Number of processes to run simulations at one time.

s Population size.

i Number of sub populations.

Since t is very large in massively MASim, time for genetic operations is less than

t. Thus, time for genetic operations is excluded here. By using the variables, exe-

cution time for the proposed method T is described as follows, however, ceiling(x)

represents the ceiling function, which returns the smallest integer not less than x.

T = g · t · s/i
ceiling(p/i)

.

s/i represents sub population size. ceiling(p/i) represents the number of processes

capable to be allocated to each sub population. That means each sub population can

run ceiling(p/i) simulations at one time. The author defines a cycle as operations to

run ceiling(p/i) simulations at one time. Therefore, operations in one generation is

finished in s/i
ceiling(p/i) cycles. Thus, time for one generation is t · s/i

ceiling(p/i) , and T is

described above. In the experiments with 20000 EVs, T ≈ 5.2 (days) holds, where

t = 25 (minutes), p = 12, g = 100, s = 32, and i = 4.
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T = g · t · s
p holds as p/i is assumed to be the integer for simplicity. That is, T

is proportionate to g, t, and s. On the other hand, T is inversely proportionate to p.

Since time required to run one simulation t isn’t improved by the proposed method,

the author needs to consider the other parameters: g, s, and p.

First, g is the parameter representing a termination condition in GA. Besides,

there is the termination condition that process is finished if the best fitness value isn’t

improved for a while. In that termination condition, execution time T can be short-

ened if the fitness values isn’t improved as Table 11. However, process of finding can

not always obtain a good approximate solution by using the condition.

Second, s is the parameter representing how far the proposed method search solu-

tions. If the parameter is too large, it would take a lot of time to converge. In contrast,

if the parameter is too small, the proposed method becomes easy to converge to a lo-

cal solution. [17] also claims that how to set the parameter differs depending on the

nature of target problems. Therefore, it is difficult to set the parameter if the nature

of target problems is unknown as designing new social systems.

Finally, p is the parameter depending on the machine specification. The param-

eter becomes very large using super computers and grid computers. Since GA has

high parallel efficiency, the proposed method enables parallel computers to fulfill

their potentials.

In summary, the proposed method is superior in terms of high parallel efficiency

that enables parallel computers, such as super computers, to fulfill their potentials.

However, the proposed method has problems in setting the parameter how far the

proposed method search solutions.
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Chapter 7 Conclusion

In this research, the objective was to obtain a semi-optimal design in designing new

social systems by using massively MASim, even if proper parameter sets are not

clear, and exhaustive search is difficult within a realistic time because of large search

space. For achieving this objective, this research has used GA that is one of EC

and has proposed a GA-driven approach to reach a semi-optimal design. This re-

search has treated a integrated system composed of traffic system and power system

as a target for designing social systems. In the social system, EVs transport sur-

plus power generated by PV generation, and people share surplus power through

power exchange stations located in various places. Then, this research has applied

the proposed approach to the social system, and has designed the new social system

composed of various existing systems. This research has verified the proposed ap-

proach by analyzing search time, convergent trend and simulation results of obtained

candidate designs.

This research has performed two types of experiments. One was in 9000 EVs,

and the other was in 20000 EVs. In the experiment with 9000 EVs, this research

has conducted the full search for the solution space in advance. Then, this research

has verified how close the derived approximate solution is to the optimal solution.

As a result, the research found that the derived approximate solution had the second

best fitness value in all solutions. The derived solution was in the top 0.02% of all

solutions since the number of all solutions is 214 = 16384. Therefore, the proposed

method was found to be able to search a semi-optimal solution. Moreover, in the

derived approximate solution, the amount of power consumption for approximately

200 homes in a day was aggregated and shared in power exchange stations. That

is, surplus PV power equal to energy for approximately 2% of all homes was used

efficiently without reversed. As a result, the derived approximate solution achieved

approximately 3% power saving as compared to the other average solution. In the ex-

periment with 20000 EVs, this research didn’t conduct the full search for the solution

space. However, the proposed method has obtained similar solutions to the experi-

ment with 9000 EVs. In the derived approximate solution, the amount of power con-

sumption for approximately 450 homes in a day was aggregated and shared in power
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exchange stations. That is, surplus PV power equal to energy for approximately 2%

of all homes was used efficiently without reversed. As a result, the derived approx-

imate solution also achieved approximately 3% power saving as compared to the

other average solution. Moreover, this research has compared parameter sets of de-

rived approximate solutions in the experiments with 9000 EVs and 20000 EVs. As

a result, it was found that there is a difference in the number of stations, and that

other parameters show similar trends. Sometimes the nature of problems changes,

and sometimes doesn’t change. Therefore, only searching coarsely in the small-scale

simulation environment and in the small number of agents is insufficient to improve

search efficiency.

This research makes a contribution as follows.

Proposal and analysis of the method for designing social systems This study has

targeted complex social systems where it is difficult to see the effect on society

by observing only individual actions, but seeing the effect on society becomes

possible by observing the sum of many humans’ actions. This study has pro-

posed a method for getting a semi-optimal design by using GA-driven search

algorithm, even if computational complexity necessary to search fully is high

because of large search space since the social system is complex as described

above. It was found that the proposed approach can search a semi-optimal solu-

tion in the target social system in this study.

As future work of this research, the following points may be mentioned. The

first one is improvements in process of finding solutions. In this study, fitness val-

ues was not improved late in the search. Therefore, there would be the termination

condition that search process is finished if fitness values aren’t improved for a while.

Furthermore, execution time for MASim depends on the scale of simulation envi-

ronment. Thus, after deducing important parameters in the small-scale simulation

environment, the method for searching in the large-scale simulation environment is

considered to be useful. However, the method needs to investigate whether the nature

of problems changes or not.

The other is elaboration and analysis of target problems. In this research, The

initial amount of EV battery was the amount of full capacity at the beginning of the

simulation. However, EV battery wasn’t filled up at the end of the simulation. There-
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fore, EV battery must be filled up at the end of simulation before analyzing simula-

tion results. Although this research assigned OD for each EVs considering not both

going and returning but only going. This research should consider both going and

returning. This research should also improve the model of power consumed of EVs.

Furthermore, this research used discrete-valued parameters. However, this research

must use real-valued parameters that can be expressed as real numbers. Moreover,

this research should search general solutions by unfixing the random seed though

this research fixed the random seed in simulations for ease in search. This research

also used one evaluation function. However, it is necessary to use the multi-objective

function because designing social systems has various objective. Moreover, this re-

search focused on deriving the semi-optimal solution, and couldn’t conduct structure

analysis of the target social system. Thus, it is necessary to analyze the solution

obtained in searching and structure of social systems.
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